
 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 
 

THESIS 
 

Approved for public release; distribution is unlimited 
 
 
 
 
 
 

A NEW FRAMEWORK FOR SOFTWARE VISUALIZATION: 
A MULTI-LAYER APPROACH 

 
by 
 

Dimitrios Spyrou 
 

September 2006 
 

 Thesis Advisor:  Thomas Wu Otani 
 Second Reader: Man-Tak Shing 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



i 

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE  
September 2006 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE A New Framework for Software Visualization: 
A Multi-Layer Approach 
6. AUTHOR(S) Dimitrios Spyrou 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER  

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
 AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT  
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
 

Software Visualization can play a significant role in our fight against Software’s inherent 
complexity. Despite all efforts made so far, Software Visualization tools have not succeeded to be a part of 
Software Engineer’s everyday practice. We believe that a properly defined taxonomy that will provide a 
framework for discussion, analysis and research guidance by offering a systematic and systemic overview 
of the area, covering all the concerns and challenges, is a starting point for a new approach for the field.  

After analyzing existing taxonomies and exploring existing tools, we approach Software 
Visualization as an interface between humans and software and we propose a multi-layered framework 
that incorporates all the concerns and the challenges of our field, in a neat, systematic and expandable 
way that can also serve as a roadmap for a research area and that can promote communication of existing 
and new ideas. 

 
15. NUMBER OF 
PAGES  

145 

14. SUBJECT TERMS  
Software Visualization, taxonomy, Framework, Multi-Layer Approach, Tools’ Integration, 
Software Visualization Definition 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



iii 

Approved for public release; distribution unlimited 
 
 

A NEW FRAMEWORK FOR SOFTWARE VISUALIZATION: A MULTI-LAYER 
APPROACH 

 
Dimitrios Spyrou 

Lieutenant Commander, Hellenic Navy 
B.S., Hellenic Naval Academy, 1991 

 
Submitted in partial fulfillment of the 

requirements for the degree of 
 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2006 

 
 
 

Author:  Dimitrios Spyrou 
 
 
 

Approved by:  Thomas Wu Otani 
Thesis Advisor 

 
 
 

Man-Tak Shing 
Second Reader 

 
 
 

Peter J. Denning 
Chairman, Department of Computer Science 



iv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



v 

ABSTRACT 

Software Visualization can play a significant role in our fight against 

Software’s inherent complexity. Despite all efforts made so far, Software 

Visualization tools have not succeeded to be a part of Software Engineer’s 

everyday practice. We believe that a properly defined taxonomy that will provide 

a framework for discussion, analysis and research guidance by offering a 

systematic and systemic overview of the area, covering all the concerns and 

challenges, is a starting point for a new approach for the field.  

After analyzing existing taxonomies and exploring existing tools, we 

approach Software Visualization as an interface between humans and software 

and we propose a multi-layered framework that incorporates all the concerns and 

the challenges of our field, in a neat, systematic and expandable way that can 

also serve as a roadmap for a research area and that can promote 

communication of existing and new ideas. 

 



vi 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



vii 

TABLE OF CONTENTS 

I. INTRODUCTION............................................................................................. 1 
A. BACKGROUND ................................................................................... 1 
B. OBJECTIVES....................................................................................... 1 
C. RESEARCH QUESTIONS ................................................................... 2 
D. METHODOLOGY................................................................................. 3 
E. THESIS ORGANIZATION.................................................................... 3 

II. SOFTWARE VISUALIZATION OVERVIEW................................................... 5 
A. INTRODUCTION.................................................................................. 5 
B. SOFTWARE VISUALIZATION AND ITS RELATION TO 

SOFTWARE ENGINEERING............................................................... 6 
C. IMPORTANCE OF VISUALIZATION................................................... 7 
D. HISTORY OF SOFTWARE VISUALIZATION.................................... 10 
E. DEFINITIONS..................................................................................... 11 

1. Introduction............................................................................ 11 
2. Literature Survey ................................................................... 12 

a. Computer Program – Code ........................................ 12 
b. Software....................................................................... 15 
c. Algorithm..................................................................... 16 
d. Visualization ................................................................ 17 
e. Software Visualization ................................................ 18 
f. Program Visualization ................................................ 19 
g. Algorithm Animation – Algorithm Visualization....... 20 
h. Static – Dynamic Visualization .................................. 21 
i. Visual Programming ................................................... 21 
j. Taxonomy .................................................................... 23 

III. SOFTWARE VISUALIZATION TAXONOMIES ............................................ 25 
A. IMPORTANCE OF TAXONOMY........................................................ 25 
B. EXISTING SOFTWARE VISUALIZATION TAXONOMIES................ 26 

1. Myers ...................................................................................... 26 
2. Price et al. (1992) ................................................................... 28 
3. Roman and Cox ..................................................................... 30 
4. Stasco and Patterson ............................................................ 33 
5. Price et al. (1993) ................................................................... 34 
6. Oudshoorn et al. .................................................................... 41 
7. Tilley & Huang........................................................................ 43 
8. Maletic, Marcus & Collard ..................................................... 44 

C. COMMENTS ON EXISTING TAXONOMIES ..................................... 46 

IV. SOFTWARE VISUALIZATION TOOLS........................................................ 53 
A. INTRODUCTION................................................................................ 53 
B. VISUALIZATION TOOLS................................................................... 53 

1. Sorting Out Sorting (1981) .................................................... 53 



viii 

2. BALSA (1983) & BALSA II (1988).......................................... 54 
3. Tango (1990) – XTANGO (1992) ............................................ 56 
4. Polka (1993) – Samba(1996).................................................. 58 
5. Zeus  (1991) ............................................................................ 59 
6. SeeSoft (1992) – SeeSys (1994) ............................................ 60 
7. CVSscan ................................................................................. 64 
8. SEE ......................................................................................... 67 
9. ShriMP – Creole ..................................................................... 70 

V. SOFTWARE VISUALIZATION CHALLENGES............................................ 73 

VI. A MULTI-LAYERED FRAMEWORK FOR SOFTWARE VISUALIZATION.. 77 
A. INTRODUCTION................................................................................ 77 
B. PROPOSED DEFINITIONS ............................................................... 77 

1. Computer Program ................................................................ 77 
2. Code - Source Code .............................................................. 78 
3. Algorithm................................................................................ 78 
4. Software ................................................................................. 78 
5. Software Visualization........................................................... 78 
6. Taxonomy............................................................................... 80 
7. Comments on Proposed Definitions.................................... 81 

C. FRAMEWORK DESCRIPTION.......................................................... 86 
1. Cognition Space .................................................................... 87 
2. Technical Space..................................................................... 88 
3. Layers Overview .................................................................... 89 
4. User Layer .............................................................................. 90 

a. User Profile.................................................................. 90 
b. User Intents ................................................................. 92 
c. User Interface .............................................................. 94 

5. Representations Layer .......................................................... 97 
a. Representation Models............................................... 98 
b. Representation Matching ........................................... 99 
c. Modalities Combination............................................ 100 

6. Mechanics Layer.................................................................. 100 
a. Mapping ..................................................................... 101 
b. Data Acquisition........................................................ 102 
c. Data Transformation................................................. 102 

7. Software Layer ..................................................................... 103 
a. Software Aspects...................................................... 103 
b. Software Artifacts ..................................................... 104 

8. Implementation Layer.......................................................... 105 
D. VISUALIZATION CYCLE – VISUALIZATION PIPELINE – 

REFERENCE MODELS................................................................... 105 
E. CONCLUSIONS AND FUTURE WORK .......................................... 112 

LIST OF REFERENCES........................................................................................ 117 

INITIAL DISTRIBUTION LIST ............................................................................... 129 



ix 

LIST OF FIGURES 

Figure 1  La France des pains [7] ........................................................................ 8 
Figure 2 Taxonomic criteria and roles in program visualization as proposed 

by Roman & Cox [51] ......................................................................... 31 
Figure 3 A Venn diagram showing how each of the existing (at that time) 

terms in the literature fit together[50]. ................................................. 35 
Figure 4  Primary categories of Price et al. updated Software Visualization 

[50]. .................................................................................................... 36 
Figure 5 Sub-categories for the Scope category of Price et al. updated 

taxonomy [50] ..................................................................................... 37 
Figure 6 Sub-categories for the Content category of Price et al. updated 

taxonomy [50] ..................................................................................... 38 
Figure 7  Sub-categories for the Form category of Price et al. updated 

taxonomy [50] ..................................................................................... 39 
Figure 8  Sub-categories for the Method category of Price et al. updated 

taxonomy [50] ..................................................................................... 40 
Figure 9  Sub-categories for the Interaction category of Price et al. updated 

taxonomy [50] ..................................................................................... 40 
Figure 10  Sub-categories for the Effectiveness category of Price et al. 

updated taxonomy [50] ....................................................................... 41 
Figure 11  Program visualization aspects as proposed by Oudshoorn et al. 

[53] ..................................................................................................... 42 
Figure 12  Taxonomy proposed by Oudshoorn et al. [53].................................... 42 
Figure 13 Linear Insertion: a) first comparison of the 4th pass, with the first 4 

items already correctly ordered; b) final comparison of the 4th pass; 
c) end of the 4th pass, after the 5th item has been moved to the 
front; d) data is sorted. Colors (shown as gray scale) denote 
“unsorted” and “sorted,” i.e., in the correct position thus far. Borders 
indicate that two items are being compared [75]. ............................... 54 

Figure 14  First-fit binpacking algorithm as visualized by BALSA [80] ................. 55 
Figure 15  Quicksort in action in BALSA-II [80].................................................... 56 
Figure 16  Snapshot if an animation for binpack produced by Tango [0]............ 57 
Figure 17  Semantic zooming in POLKA family [88] ............................................ 58 
Figure 18  POLKA’s animation of a parallel minimum spanning tree program. 

The left view shows the graph and the spanning tree growing inside 
it. The right view shows the "closest" data structure maintained by 
the program [91]. ................................................................................ 59 

Figure 19  Algorithm animations produced by Zeus [88] ..................................... 60 
Figure 20 A display produced from Seesoft displaying non indented code for 

different files, showing the relative size of the files, the age of code 
and how many times a file has been changed [96]............................. 61 



x 

Figure 21 Left pane: subsystem and directory statistics. Middle pane: a fill 
statistic for directories. Right pane: a zoomed view on subsystem Y 
showing file level statistics [97]........................................................... 63 

Figure 22 Bug rates by sub-system and directories as presented by SeeSys 
[97] ..................................................................................................... 63 

Figure 23 The SeeSoft text view showing code age according to a rainbow 
color scale [100]. ................................................................................ 64 

Figure 24  CVSscan representation approach for different versions of the 
same file over time [101]. ................................................................... 65 

Figure 25 Colors used for encoding source code attributes. Represented 
(from left to right) are author, construct, and line status [101]. ........... 65 

Figure 26  File based (top) and line-based (bottom) layouts of CVSscan for a 
file with sixty five versions [101]. ........................................................ 66 

Figure 27  Multiple code views in CVSscan[101]................................................. 67 
Figure 28  Four miniatures pages from a C program book as published by 

SEE [102]. .......................................................................................... 69 
Figure 29  Opening a node, the node’s contents are displayed inside the 

opened node and the user is descending the program’s hierarchy 
with more details being presented while preserving the context 
[103]. .................................................................................................. 70 

Figure 30  Magnifying a simple C program, the context is removed until the 
max zoom level is reached, which is the source code [104]. .............. 71 

Figure 31  Proposed relation for the areas of Software Visualization and 
Algorithm Visualization ....................................................................... 83 

Figure 32  A Venn diagram showing the terms in the SV literature as proposed 
by Price, Beacker & Small [43]. .......................................................... 84 

Figure 33  Programming (visual or not) and Software visualization are on the 
same path but differ in direction ......................................................... 85 

Figure 34  Software Visualization as an interface between human and 
software.............................................................................................. 86 

Figure 35  The spaces of Software Visualization, in the higher level of 
abstraction.......................................................................................... 87 

Figure 36 The five layers of Software Visualization ............................................ 89 
Figure 38  The Visual Hierarchy proposed by Zhou & Feiner [126] ..................... 98 
Figure 38  Visualization cycle proposed by Duke et al. [132] ............................ 106 
Figure 39  Haber & McNabb’s reference model [134]........................................ 107 
Figure 40 Oudshoorn's transformation series to produce program visualization 

[53]. .................................................................................................. 107 
Figure 41 Card's Reference Model [74]. ........................................................... 108 
Figure 42 Visualization Reference Model proposed by Robertson & De Ferrari 

[135] ................................................................................................. 109 
Figure 43 Reference Model proposed by Brodlie et al. [136]............................ 110 
Figure 44  The Software Visualization process as a two way communication... 111 
 
 



xi 

LIST OF TABLES 

Table 1 Classification of Program Visualization Systems, as initially 
proposed by Myers [27]. In this taxonomy PV systems are classified 
by whether they illustrate code or data, and whether the produced 
visualizations are static or dynamic. ................................................... 27 

Table 2 The updated classification of Program Visualization Systems 
proposed by Myers [28] classifying programs by whether they 
illustrate code, data or algorithm, and whether the produced 
visualizations are static or dynamic. ................................................... 28 

Table 3  The Price et al. (1992) taxonomy at a glance ..................................... 30 
Table 4  Roman & Cox taxonomy at a glance .................................................. 32 
 
 
 



xii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



xiii 

ACKNOWLEDGMENT 

This thesis is dedicated to all those people who believed in me and 

supported me the last four years; from the moment I decided to apply for a 

Master’s Degree at the Naval Postgraduate until now, but also, to all those who 

tried hard, but did not succeed, to discontinue my wonderful trip towards 

knowledge.  

I would like to acknowledge my advisor Dr. Thomas Otani, who was 

always standing by my side, provided me with the opportunity to pursue my own 

research path letting me work in my own pace, being very patient in periods of 

slow progress, understanding that I was novice in the area of Software 

Visualization, always providing helpful critiques revealing the insights of our 

research object and most importantly, never stopped believing in me. His help 

was invaluable. 

Many thanks to Dr. Man-Tak Shing, who offered his time and knowledge 

for the completion of this work and to my brother Dr. Thomas Spyrou who was 

always there for me; every single discussion with him was a broadening of my 

horizons. 

Many thanks to Commander Dionysios Antonopoulos HN; without his 

help, things would be very different.  

Last and more important, I must single out the encouragement I received 

from my fellow-traveler in this life; my wife, Mary. Despite being neglected many 

times during my countless working hours and the distance that came in between 

us during the last two months, she was constantly supporting me with her love, 

trust, and patient, always encouraging me to keep on while simultaneously 

raising my two wonderful kids.  

God bless them all. 



xiv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK



1 

I. INTRODUCTION 

A. BACKGROUND 
 

The field of software engineering concerns itself with the technology and 

processes of software development, and thus it has approached the problems of 

software complexity and incomprehensibility in a number of ways.  

Software development techniques such as top-down design and stepwise 

refinement [1], structured programming [2], modularity and information hiding [3], 

object oriented programming [4] and design patterns [5] are only a small number 

of the existing ones that assist Software engineers in their difficult task. 

Another significant and promising approach is the use of CASE 

(computer-aided software engineering) tools such as rapid prototyping tools or 

visual tools. More specifically, Visual Programming and Program Visualization 

were always a “wish” as an aid for experts to anticipate software’s complexity 

and have been part of the software engineering culture from its inception. It’s 

obvious that, as software projects will continue to grow in complexity and size, 

tools that aid teams to understand, design, program, debug, maintain and evolve 

will always be welcome. Here is the call for Software Visualization that has the 

potential to contribute significantly to the development of software products by 

providing solutions to many of the problems software engineers, software project 

leaders, and programmers are facing. This is the reason why Software 

Visualization has rapidly emerged as an important field in Computer Science and 

Software Engineering and research is being conducted into this area globally. 

 

B. OBJECTIVES 
 

Various Software Visualization tools have been touted as panaceas for 

many Software Engineering problems while exaggerated claims are 



2 

commonplace in both academia and commercial Software Visualization tools. 

Despite the significant efforts made by various researchers worldwide, visual 

tools have not been integrated into the mainstream and professional developers 

still work in much the same way as they did in the early days of the computing 

era.  

We believe that there is great potential in this area and this thesis’ focus is 

to propose a new framework that will assist in the developing of more effective 

tools that will amplify the cognition of the various software artifacts, to all the 

participants in the development process. 

 

C. RESEARCH QUESTIONS 
 

Our primary target is an exploration of the current state of the area so that 

we can discover the challenges and propose solutions for them. The study 

addresses the following research questions: 

What are the origins of Software Visualization? 

 How did it start? 

 How did it evolve? 

What is the current status of the area? 

 Has the area evolved in the correct direction?  

How fast has the area evolved? 

Has the area adopted new technology? 

Has the area evolved based on a well defined and unambiguous 

taxonomy?  

Are there any misconceptions in the terminology used? 

Has the area incorporated in its terminology the evolution of the 

area and the technology? 



3 

What approaches for visualization has been implemented so far? 

Do they visualize the various software artifacts? 

What are their key ideas and weaknesses? 

What other, not yet implemented, proposals exist? 

What are the challenges that SV is facing? 

What can be done to boost the penetration of the area in the world 

of professionals? 

 What should be the characteristics of visualization tools in order to 

be easily accepted?  

What framework should we establish to address these challenges?  

 

D. METHODOLOGY 
 

We will start by first exploring the area’s historical roots and terminology. 

We will present the existing definitions for the most important terms and reveal 

any inconsistencies that exist. We will present and analyze the existing 

taxonomies of the area and reveal the “black spots” that have been unexplored, 

in the theoretical taxonomical level. Then we will examine a number of existing 

tools and analyze the principles that they are based on. After having a good 

insight into the current status, we will present the challenges that the area is 

facing and try to define a direction that should be followed for the future. 

 

E. THESIS ORGANIZATION 
 

Chapter II provides an overview of the area, its relation to Software 

Engineering, its importance and its potential ability to assist in the difficult task of 



4 

engineering the software. In this chapter, we also provide a brief history of the 

early years of the field and define the most common terms of the field. 

In Chapter III we present all of the taxonomies and we analyze and 

compare them in an attempt to reveal their weak points based on the given 

evolution of software. 

In Chapter IV we present Software Visualization tools that are significant, 

either from a historical point of view through their contribution of new principles or 

visualization metaphors, or by virtue of their acceptance by Software Engineering 

professionals. 

Chapter V contains an overview of the challenges that should be 

addressed by researchers in the near or far future, if we expect Software 

Visualization to gain the role it deserves. 

Finally, in Chapter VI we propose a new framework that can also be used 

as a taxonomy of the area or a vehicle for the development of new tools. 



5 

II. SOFTWARE VISUALIZATION OVERVIEW 

A. INTRODUCTION 
 

Computer technology has saturated the modern world, influencing every 

aspect of our lives. Technology is all around us: smart cars, smart houses, 

microwaves, wristwatches, factory automated installations, nuclear power plant 

control systems, aircraft, the personal computers we all use, Playstations and 

entertainment systems, to name a few. 

Our lives are dependent on computer systems, to a degree that many of 

us have not yet realized. When we are flying in an aircraft, a computer is 

responsible for our safety by checking and controlling all the vital devices of the 

aircraft, reporting, of course, to the pilot. The nuclear plants are there providing 

energy without any problem because state of the art computer controlled 

systems are inspecting every small detail of their operation. The devices installed 

in hospitals providing oxygen to our loved ones, are providing the proper amount 

of oxygen based on a plethora of measurements taken every millisecond by 

various sensors that give feedback to their computerized control unit. When we 

press the brake pedal in our car, trying to avoid an obstacle, a signal is 

transmitted to a computer that directs the behavior of the braking system in a 

manner such that the minimum breaking distance is accomplished. Even the 

microwave we have in our house is preparing our food or turning on its internal 

light every time we open the door, under control of a computerized central unit. 

Most important is that any computer based device would be useless 

without the existence of a piece of software inside it. All this great functionality 

that is hidden inside so many devices that we all enjoy, exists because someone 

designed and created the software for it. 

But this is not all. Our requirements do not stop here. We want technology 

to be reliable since we are used to the service that it provides us. We want 



6 

technology to be safe, since we won’t tolerate accidents due to a bug in the 

device. We want technology to be secure, because we care about our privacy 

but, on the other hand, we want technology to be easily accessible despite our 

own mobility or the limitations we pose regarding size, weight, price, speed, etc. 

Moreover, we want our devices to be upgradeable without having to pay a lot; we 

want them to be able to satisfy our continuously changing and sometimes poorly 

defined needs.  

These are some of the reasons that made development of software in our 

era an extremely difficult and demanding activity. The final recipients of all those 

contradicting facts are the software engineers and programmers. These are the 

people who have to address those challenges and think of solutions, not in a 

theoretical space, but capable of being easily and inexpensively implemented.  

 

B. SOFTWARE VISUALIZATION AND ITS RELATION TO SOFTWARE 
ENGINEERING 
 

Software engineers must balance between user needs and constraints 

imposed by management. They have to do the job right within the given time 

limits. Software Engineering as a discipline, must address these challenges 

through the development and refinement of new models, techniques, practices, 

and tools that build upon sound engineering principles. A software engineering 

team must think of software not only as a mathematical description or a product, 

but also as a service, a commodity, or even as a user experience. 

Among the roots of the various problems, the most significant has been 

widely accepted to be the nature of software. software engineers and 

programmers have to deal with an abstract entity that does not follow any of the 

laws of nature. Software is clearly abstract, dynamic, and extremely complex 

posing a lot of difficulties in its comprehension. Software is hidden from the 

senses, exists in its own space, is imaginary and can be perceived only using our 

imagination. Furthermore, analogies that apply in real life cannot be applied in 



7 

software. Making a scaled prototype of a ship is enough to extract critical facts 

regarding its behavior when later in the water. On the other hand, creating a 

database that can handle 10 users will not provide any information regarding its 

behavior if the number of users will be increased to 1,000,000. The problem of 

“paging yourself to death” is a well known problem for those that are aware of the 

history of Computer Science, showing clearly that scaling is not a solution for our 

field; at least not to the degree that it is for other science and engineering areas.  

As we have already stated, the field of software engineering concerns 

itself with the technology and processes of software development, and thus it has 

approached the problems of software complexity and incomprehensibility in a 

number of ways. CASE (computer-aided software engineering) tools such as 

visual tools, are always welcome, as long as they have a smooth learning curve 

and can prove that they are cost efficient and deserving of the time that 

professionals will spend to embody them in their everyday practice. 

Software visualization can be a significant aid for the perception and 

conceptualization of software and for clarifying software’s inherent complexity.  

Software visualization (SV), in general, is concerned with the presentation 

of the various software artifacts in a way that will decrease the cognitive load of 

any participant in the difficult task of engineering the software. 

 

C. IMPORTANCE OF VISUALIZATION 
 

The role that visualization plays for human reasoning has been expressed 

by philosophers throughout the centuries. A typical example is Kant’s [6] 

statement “The senses cannot think. The understanding cannot see. By their 

union only can knowledge be produced,” that shows clearly the need to stimulate 

all the senses in our fight against complexity. 



8 

Another typical example for the value of visualization and how a huge 

amount of information can be presented in an effective way, is the “Map of bread” 

shown in Figure 1. 

 

Figure 1  La France des pains [7] 
 

Human’s visual system has been acknowledged for its ability to quickly 

absorb information; combined with other senses the results can be tremendous. 

Presentation of complex concepts through the use of pictures can clarify them, 

and stepping slowly through a process, presented in a pictorial form, will increase 

the level of understanding. Viewing changes in a set of data or the outcomes of 



9 

software when different data sets are input to it, gives a quicker grasp of what is 

going wrong. Visual representations of run-time data can provide invaluable 

information in many phases of the software life cycle. Visualized presentations of 

large volumes of information, in the proper format, can help the assimilation of 

the information contained and offer a quick overview, usually required for gaining 

the “big picture.” 

Those are only some of the reason that visualization has become an 

important tool in the hands of computer scientists and all engineers. Visualization 

is heavily used in mechanical engineering, chemistry, physics and medicine. 

Computer scientists have developed sophisticated systems to produce 

visualizations for these disciplines and, as a consequence, visualization has 

become a discipline of computer science and a valuable tool for Software 

Engineering. 

In a survey made by R. Koschke [8] based on researchers from software 

maintenance, re-engineering and reverse engineering, 40% found software 

visualization absolutely necessary for their work and another 42% found it 

important but not critical. 

Another survey conducted by Bassil & Kelller [9] showed that among the 

benefits of Software Visualization tools are savings in time and increases in 

productivity and software quality as results of better software comprehension. 

As a conclusion, the area of Software Visualization, as a young discipline, 

is striving to find its way down the difficult road of software understanding. Many 

researchers have realized that it can greatly help Software Engineering in 

complicated tasks. Knowing that, modern computing systems are characterized 

by their power graphics, we have the burden, as researchers, to take advantage 

of those abilities but also of the evolution in relevant areas such as cognitive 

psychology, and create tools that will decrease the cognitive load of their users. 

 

 



10 

D. HISTORY OF SOFTWARE VISUALIZATION 
 

The concept of software visualization dates back to the early days of 

computing, when Goldstein and von Neumann [10], in 1947, presented the 

flowchart as a mean of facilitating program comprehension, especially useful for 

programming in Assembly. This is generally accepted as the first effort for static 

visualization of programs. The Nassi-Shneiderman diagrams [11], presented in 

1973, were a refinement of them. 

For both approaches, various systems that automated their construction 

have been proposed. For example, Haibt [12], in 1959, developed a system to 

draw flowcharts automatically with a Fortran or assembly program as an input. 

Knuth [13], in 1963, developed a system to integrate documentation with the 

source code and also to automatically generate flowcharts. Roy and St. Denis 

[14], in 1976, developed a system for automatically generating Nassi-

Shneiderman diagrams from source code. 

In the area of “prettyprinting”, an effort was made, in 1963, by Naur [15] 

based on Algol language. This was followed by other ideas like a PL/I statement 

reformatter presented in 1970 by Conrow and Smith [16]; an automatic formatting 

system for Pascal, presented in 1977, by Hueras & Ledgard’s [17]; Knuth’s 

proposal in 1984 [18], for literate programming and many others up to Baecker & 

Marcus’ [19] effort, in 1990, with their SEE program visualizer – a UNIX-based 

system for automated typesetting C programs, according to an elaborate style 

guide. 

Regarding the area of dynamic visualization, the first widely accepted 

effort is Knowlton’s [20] (1966) list processing and manipulation with its L6 low 

level list processing language, visualizing data structures in a dynamic way. The 

next significant step, in 1981, was Baecker’s [21] film “Sorting Out Sorting”, a 30 

minutes color and narrated film that uses animated computer graphics to 

manipulate nine sorting algorithms. Other efforts in this area include Baecker's 



11 

interactive debugger, presented in 1968 [22], which was able to produce static 

images of high-level language data structures; Booth’s[23] short film animating 

PQ-tree data structure algorithms, presented in 1975; Lieberman’s [24] effort in 

1984, to aid debugging of Lisp programs; up to the evolution of BALSA in 1984 

by Brown and Sedgewick [25], an interactive tool for visualizing data structures in 

Pascal programs. 

Some of the above mentioned SV tools will be presented later on, along 

with tools presented after 1990. For a more detailed history of SV, the reader is 

encouraged to read a paper written by R. Baecker & B. Price [26]. 

 

E. DEFINITIONS 
 

1. Introduction 
Communication requires commonly accepted definitions. Additionally, we 

believe that heedful, etymological analysis will reveal meanings not easily 

observable otherwise. Our effort is not to “reinvent the wheel” and provide our 

own definitions, but rather to present the existing ones, compare them, point out 

the “missing parts” and correlate them to the dimensions they offer to the area 

widely known as Software Visualization. 

From the early beginnings of our exploration in this area, we realized that 

even the term Software Visualization itself is not well established and accepted. 

There are many students and researchers that prefer the “older” term of Program 

Visualization or even confuse Visual Programming with Program Visualization. 

In our effort to define the boundaries of Software Visualization, we will 

start from the very beginning: the distinction between program and software; the 

differences between visualization, auralization, understanding, and 

conceptualization; the differences between software, software system, and 

programming, in general; and many more terms that we believe have caused the 

area to be in a continuous effort to show its significance in Software Engineering. 



12 

Although these may seem like philosophical questions, we believe that 

they will assist us in our effort to illuminate the existing dark spots in this area 

and point out a new direction, which we think is a promising one for the future of 

Software Visualization. 

It is a well known fact that there are misunderstandings and confusions 

regarding the various terms used in the area of Software Visualization, partly due 

to the overlapping with other research areas and partly due to the fast evolution 

of the software itself, with the most distinctive example being the interchange of 

the terms program and software. 

Of course it’s out of the scope of this document to present all the existing 

definitions for those terms but only some of the most expressive and complete 

ones. 

2. Literature Survey 
a. Computer Program – Code 
Etymologically, the word program is derived from the Greek 

language where the word means a sequence of statements that are pre-written 

or pre-defined that will be used later for execution. 

According to Myers a program is “a set of statements that can be 

submitted as a unit to some computer system and used to direct the behavior of 

that system [27] & [28].” The interesting fact is that Myers never used the term 

software in the papers where he proposed his taxonomy. 

In his classical book “The Mythical Man Month,” Brooks present an 

evolution cycle, clearly separating the terms “program,” “programming product,” 

“programming system” and “programming systems product.” According to this 

cycle, “a program is complete in itself,” and will eventually “become a part of a 

collection of interacting programs, coordinated in function so that the 

assemblance constitutes an entire facility for large tasks [29].” 

If we move to the legal system, we will see that “a computer 

program” is a set of statements or instructions to be used directly or indirectly in a 



13 

computer in order to bring about a certain result [30]” while the word coding, is 

defined as “transforming of logic and data from design specifications into a 

programming language [30].” Those definitions make the words coding and 

programming synonyms and, as a consequence, the words code and program.  

Searching the IEEE standards to find the same definition we see 

that the term coding has two meanings, depending on the context: the first is 

exactly the same as the definition used in the legal system, while the second is 

more software engineering oriented. More specifically, coding is defined as: 

(1) In software engineering, the process of expressing a computer 

program in a programming language, and 

(2) The transforming of logic and data from design specifications 

(design descriptions) into a programming language [31]. 

As a necessary complement to the above definition we have to 

provide the definition of computer program, given in the same standard: 

“Computer program: A combination of computer instructions and data definitions 

that enable computer hardware to perform computational or control functions 

[31].”  

Two more interesting definitions are provided in the same standard, 

[31]; the first is for source program which is defined as “A computer program that 

must be compiled, assembled, or otherwise translated in order to be executed by 

a computer” and code which is defined as follows: 

(1) In software engineering, computer instructions and data 

definitions expressed in a programming language or in a form 

output by an assembler, compiler, or other translator. See also: 

source code; object code; machine code; microcode. 

(2) To express a computer program in a programming language. 

(3) A character or bit pattern that is assigned a particular meaning; 

for example, a status code. 



14 

IEEE recognizes different kinds of code, such as source code, 

machine code, compiler code, etc. with the most interesting definitions being the 

ones provided for machine code and source code. The first is defined as 

“Computer instructions and data definitions expressed in a form that can be 

recognized by the processing unit of a computer,” and the latter as “Computer 

instructions and data definitions expressed in a form suitable for input to an 

assembler, compiler, or other translator. Note: A source program is made up of 

source code.” 

Before we propose any definition, we believe that it’s worth 

mentioning two more facts regarding the IEEE’s view for the term program: 

(1)  IEEE has depreciated terms such as computer program 

component and computer program configuration item by transforming them to computer 

software component and computer software configuration item; a transformation 

indicating the significant difference between the two terms.  

 In their various definitions for program and code, they 

intentionally repeat the phrase “data definitions” separating the actual data that will be 

used as input during the execution of the program from the program itself. 

IEC defines program as “A series of actions proposed in 

order to achieve a certain result [32].” Musa et al. define program as “A set of 

complete instructions (operators with operands specified) that executes within a 

single computer and relates to the accomplishment of some major function [33].” 

Finally, Smith & Wood define programs as: “A set of coded 

instructions which enable a computer to function. A program may consist of many 

modules and be written in assembly or high-level language. Note the spelling 

"program", whereas "programme" is used to describe a schedule of tasks [34].” 

This survey of definitions ought to close by citing the 

definition provided by Turing in one of his papers:  

 



15 

If one wants to make a machine mimic the behaviour of the human 
computer in some complex operation one has to ask him how it is 
done, and then translate the answer into the form of an instruction 
table. Constructing instruction tables is usually described as 
"programming." To "programme” a machine to carry out the 
operation A, means to put the appropriate instruction table into the 
machine so that it will do A [35]. 

b.  Software 
According to the literature, software is a more generic term. The 

term was first used (in the area of Computer Science) by John Wilder Tukey [36] 

in the phrase "Today the ‘software' comprising the carefully planned interpretive 

routines, compilers and other aspects of automative programming are at least as 

important to the modern electronic calculator as its 'hardware' of tubes, 

transistors, wires, tapes and the like." 

According to the American Heritage Dictionary, software is “The 

programs, routines, and symbolic languages that control the functioning of the 

hardware and direct its operation [37].” 

In the literature, software is usually used as a generic term for 

collections of computer data and instructions or even anything that can be stored 

electronically, being the complement of hardware in terms of computers. The 

former requires the existence of the latter while the latter without the former is 

useless. The term “soft” contained in the former is often used to denote its 

modifiable nature in contrast with the concrete and unchanged nature of the 

latter. 

Pressman, in one of his classic books, defines software as: “(1) 

instructions (computer programs) that when executed provide desired function 

and performance, (2) data structures that enable the programs to adequately 

manipulate information, and (3) documents that describe the operation and use 

of the programs [38],” making clear that software is a more generic term than 

program. 



16 

IEEE defines software as “computer programs, procedures, and 

possibly associated documentation and data pertaining to the operation of a 

computer system [31],” also pointing out that software is a more generic term 

than program. 

Definitions, identical or similar to that of IEEE, can be found in UK 

MoD publications [39], ESA publications [40] and in the majority of governmental 

publications. 

In general, the term software is defined as a more generic term 

usually including the term program but, occasionally, used interchangeably with 

it. 

c. Algorithm  
Here things are more clear since the various definitions that can be 

found in the literature are almost identical.  

In their classical book on algorithms, used by the majority of the 

Computer Science departments worldwide, T. Cormen et al. define the term 

algorithm as “any well defined computational procedure that takes some value, or 

set of values, as input and produces some value, or set of values, as output. We 

can also view an algorithm as a tool for solving a well-specified computational 

problem [41].” 

In another book where algorithms are presented in the context of 

Computer Science, an algorithm is defined as a “a specification of behavioural 

process…. consists of a finite set of instructions that govern behaviour, step by 

step [42],” while Price, Baecker and Small describe algorithms differently as 

“higher-level descriptions of programs [43].” 

IEEE defines the term algorithm as “A finite set of well-defined rules 

for the solution of a problem in a finite number of steps [44],” while the Oxford 

Dictionary states that an algorithm is a “process or set of rules used in 

calculations or other problem-solving operations [45].” 



17 

We have to point out that definitions of algorithm (in the context of 

computer science) present one major difference from a theoretical perspective; 

whether the number of steps that have to be executed should be finite or not. 

d. Visualization  
In order to define terms such as Software Visualization we have to 

look at both parts individually but also in conjunction, since the meaning may be 

altered when they are joined. 

The Oxford Dictionary [46] defines the word visual in seven 

different ways: six closely related to sight and the seventh one as “Of the nature 

of a mental vision; produced or occurring as a picture in the mind,” while the word 

visualization is clearly defined as “(1) The action or fact of visualizing; the power 

or process of forming a mental picture or vision of something not actually present 

to the sight; a picture thus formed, (2) The action or process of rendering visible.” 

It is also worth mentioning that the term visualize is defined as 

(1)To form a mental vision, image, or picture of (something not 

visible or present to the sight, or of an abstraction); to make visible 

to the mind or imagination, (2) To form a mental picture of 

something not visible or present, or of an abstract thing, etc.; to 

construct a visual image or images in the mind, (3) to render 

visible.” 

Searching other dictionaries we found that the creation of a mental 

image is mentioned in the definition of the word visual, as one of the possible 

meanings, but not the primary one.  

In [47] the word visual is defined as 

(1) of or relating to the sense of sight: a visual organ; visual 

receptors on the retina. (2) Seen or able to be seen by the eye; 

visible: a visual presentation; a design with a dramatic visual effect. 

(3) Optical. (4) Done, maintained, or executed by sight only: visual  

 



18 

navigation. (5) Having the nature of, or producing an image in the 

mind: a visual memory of the scene. (6) Of or relating to a method 

of instruction involving sight. 

In [48] the term visual is defined as “(1) of, relating to, or used in 

vision, (2) attained or maintained by sight, (3) VISIBLE, (4) producing mental 

images, (5) done or executed by sight only, (6) of, relating to, or employing visual 

aids.”  

Finally, McCormick, De Fanti & Brown in [49] define visualization as 

“the use of computers or techniques for comprehending data or to extract 

knowledge from the results of simulations, computations, or measurements.” 

e. Software Visualization  
According to some of the pioneers in the area of Software 

Visualization, the term visualization takes its meaning from the idea declared by 

the seventh definition of the term, referring to an older version of the Oxford 

Dictionary, where visualization was defined as “the power or process of forming a 

mental picture or vision of something not actually present to the sight [43 page 3]. 

Software Visualization is actually defined the same way it was defined in [50]1 as 

“the use of the crafts of typography, graphic design, animation, and 

cinematography with modern human-computer interaction technology to facilitate 

both the human understanding and effective use of computer software.” 

According to our understanding, this definition is not really broad since the 

means that can be used in the “visualization” process should be among the 

enumerated ones in the definition and hence not all different sensory inputs are 

allowed. A consequence of this definition of SV is that it’s subject to future 

inventions and thus it will have to be altered if new technological inventions will 

be used. 

                                            
1 This was expected since the authors of Chapter 1 of [43] are the ones that published [50] 

some years earlier. 



19 

Roman and Cox define SV as “a mapping from program to 

graphical representations [51].” Again here we see the limitation of SV in 

graphical means with the object of visualization being only a program. 

Koschke, in his well-known survey on Software Visualization [8] 

mentions that “Software visualization is concerned with the static visualization as 

well as the animation of algorithms, programs, and the data they manipulate.” 

More recent views of Software Visualization broaden the area. A 

typical example is the description provided by Diehl in [52] where it is stated that 

“Software visualization encompasses the development and evaluation of 

methods for graphically representing different aspects of software, including its 

structure, its execution, and its evolution.”  

f. Program Visualization  
Here things become a little more complex, since the majority of the 

published papers agree that program visualization is a branch of Software 

Visualization that is focused on programs, compared to the other part of Software 

Visualization that concerns algorithms. 

For example, in [50] program visualization is defined by Price, 

Baecker and Small as “the visualization of an actual program code or data 

structured in either static or dynamic form.” 

The term “program visualization” became widely accepted after 

Myers’ papers [27] [28] and has been expanded to what we call today Software 

Visualization after the incorporation of the concept of algorithm animation.  

As we will see later in Myers taxonomy presentation, he does not 

provide an explicit definition but rather a descriptive one, stating that “in Program 

Visualization the program is specified in the conventional, textual manner, and 

the graphics are used to illustrate some aspect of the program or its run-time 

behavior [27] [28].” 

Roman and Cox, define program visualization as “a mapping from 

program to graphical representations [51],” which is a very broad definition but 



20 

clearly does not contain the concept of algorithm animation.2 Oudshoorn et al. 

define PV as “the use of graphical artifacts to represent both the static and 

dynamic aspects of a program [53].”  

Ellershaw & Oudshoorn [54] wrote in a technical report, “Program 

visualization focuses on the graphical representation of an executing program 

and its data. The information is presented in a form designed to enhance both 

the understanding and productivity of the programmer through the efficient use of 

the human visual system,” and later defined as “the application of graphical 

transformations to an executing program to enhance the reader’s understanding 

of that program.” 

Baecker, one of the founding fathers of visualization defines 

program visualization as "the use of graphics to enhance the art of program 

presentation and thereby to facilitate the visualization, understanding, and 

effective use of computer programs by people [55].” Petre et al. describes the 

purpose of program visualization as “trying to find simplicity in a complex artifact 

(e.g. thousand-line code), to produce a selective representation of a complex 

abstraction [56].“ 

In general, according to the majority of the papers related to this 

area, program visualization is directly connected to the term “program” and the 

concept of assisting the user to better understand it. We also have to mention 

that in the early days of the discipline, it was often confused with software 

visualization and both terms were used interchangeably. After the taxonomy 

proposed from Price et al. [50], and the publication of [43], it became widely 

accepted that program visualization is a part of software visualization but still, not 

all software artifacts were included in the definition. 

g. Algorithm Animation – Algorithm Visualization 
For many researchers the words animation and visualization seem 

to be identical and hence they are used interchangeably. In one of the early 

papers for algorithm animation, Brown states that “algorithm animation is a form 
                                            

2 This can be easily seen by the taxonomy they proposed. 



21 

of program visualization… Algorithm animation displays are, essentially, dynamic 

displays showing a program’s fundamental operations – not merely its data or its 

code [57].” 

Price, Baecker and Small [43] distinguish between algorithm 

animation and algorithm visualization stating that “algorithm visualization is the 

visualization of the higher level abstractions which describe software,” while 

“algorithm animation is dynamic algorithm visualization.”3 They divide the area 

this way, into static algorithm visualization and algorithm animation, providing as 

an example of the former the well-known flowcharts and as examples of the latter 

tools like Balsa, Zeus, Tango etc. 

Karren & Stasko [58] state that an algorithm animation “visualizes 

the behavior of an algorithm by producing an abstraction of both the data and the 

operations of the algorithm,” thereby loosening the distinction made by Price, 

Baecker and Small. 

h. Static – Dynamic Visualization  
Etymologically, these word are derived from Greek, with the word 

“static” meaning – among other things not relevant to our area – something that 

does not change, that remains stable and in the same state, and the word 

“dynamic” meaning something that changes over time, that is active, energetic, 

effective, and forceful and in our context is the opposite of static. In general, 

these terms refer to systems that can show “snapshots” of the object to be 

visualized or systems that can provide a “live” representation, respectively. 

i. Visual Programming  
Even though almost all the papers of the area state that there is a 

misunderstanding between Visual Programming and Program Visualization, all 

the authors provide similar definitions that do not actually allow for distinctions. 

Myers [28] states that 

                                            
3 Price, Baecker, and Small define both areas of study to collectively be a part of Software 

Visualization. 



22 

Visual Programming as 'Visual Programming' (VP) refers to any 
system that allows the user to specify a program in a two-(or more)-
dimensional fashion. Although this is a very broad definition, 
conventional textual languages are not considered two-dimensional 
since the compilers or interpreters process them as long, one-
dimensional streams. 

Price, Baecker and Small in [43] define Visual Programming as “the 

use of ‘visual’ techniques to specify a program.” 

Searching for definitions from Visual Programming researchers, we 

found that there exist definitions that clearly separate the two areas, like the one 

provided by Burnett [59] who states that 

Visual programming is programming in which more than one 
dimension is used to convey semantics. Each potentially significant 
multi-dimensional object or relationship is a token (just as in 
traditional textual programming languages each word is a token) 
and the collection of one or more such tokens is a visual expression 
such as diagrams, free-hand sketches, icons and so on. When a 
programming language’s (semantically significant) syntax includes 
visual expressions, the programming language is a visual 
programming language (VPL). 

Contrastingly to this, there exist a number of other definitions that 

actually merge the two areas. For example, Golin and Reiss [60] state that  

A visual language manipulates visual information or supports visual 
interaction, or allows programming with visual expressions. The 
latter is taken to be the definition of a visual programming 
language… Visual programming environments provide graphical or 
iconic elements, which can be manipulated by the user in an 
interactive way according to some specific spatial grammar for 
program construction. 

McIntyre and Glinert [61] define Visual Programming as 

the use of visual expressions (such as graphics, drawings, 
animation or icons) in the process of programming. These visual 
expressions may be used in programming environments as 
graphical interfaces for textual programming languages; they may 
be used to form the syntax of new visual programming languages  
 
 



23 

leading to new paradigms such as programming by demonstration; 
or they may be used in graphical presentations of the behavior or 
structure of a program. 

As a conclusion we have to point out that in all definitions provided 

by researchers in the area of Software Visualization, the common thing is the 

concept that Visual Programming aims in the specification of a program in means 

different than the traditional textual one and also that the traditional textual format 

is not considered to be part of Visual Programming while things in the arena of 

Visual Programming are not the same.  

j. Taxonomy  
Etymologically, the word is derived from Greek and more 

specifically, as listed in the Oxford Dictionary [46] from the words  (taxis) that 

means arrangement or order, and -  (nomia) that means distribution. English 

words that are usually used as synonyms to taxonomy are “classification” and 

“categorization.” One of the major disputes relating to the word taxonomy is 

whether it contains the concepts of mutual exclusiveness and joint 

exhaustiveness for the categories it specifies.  

Aristotle in one of his earlier works, the “Categories,” proposed one 

of the first taxonomies but he never mentioned anything regarding mutual 

exclusiveness [62]. Wikipedia [63] states that 

Taxonomies are frequently hierarchical in structure, having parent 
child relationships. However, taxonomy may also refer to 
relationship schemes other than hierarchies, such as network 
structures. Other taxonomies may include single children with multi-
parents, for example, "Car" might appear with both parents 
"Vehicle" and "Steel Mechanisms"; to some however, this merely 
means that 'car' is part of several different taxonomies… 
Mathematically, a hierarchical taxonomy is a tree structure of 
classifications for a given set of objects. At the top of this structure 
is a single classification, the root node that applies to all objects. 
Nodes below this root are more specific classifications that apply to 
subsets of the total set of classified objects. 



24 

According to IEEE [64] taxonomy is defined as “a scheme that 

partitions a body of knowledge and defines the relationships among the pieces. It 

is used for classifying and understanding the body of knowledge.” 

Webster’s Dictionary, defines taxonomy as “A systematic 

arrangement of objects or concepts showing the relations between them, 

especially one including a hierarchical arrangement of types in which categories 

of objects are classified as subtypes of more abstract categories, starting from 

one or a small number of top categories, and descending to more specific types 

through an arbitrary number of levels [48].” 

One of the most cited and broadly used definitions is the one 

provide by Whatis.com that defines taxonomy as: 

the science of classification according to a pre-determined system, 
with the resulting catalog used to provide a conceptual framework 
for discussion, analysis, or information retrieval. In theory, the 
development of a good taxonomy takes into account the 
importance of separating elements of a group (taxon) into 
subgroups (taxa) that are mutually exclusive, unambiguous, and 
taken together, include all possibilities [0]. 



25 

III. SOFTWARE VISUALIZATION TAXONOMIES  

A. IMPORTANCE OF TAXONOMY  
 

As an old Chinese proverb says “The first step towards wisdom is calling 

things by their right names,” so the creation of a taxonomy is the first step 

towards the exploration of an area. 

A properly defined taxonomy will provide a framework for discussion, 

analysis and research guidance by offering a systematic and systemic overview 

of the area. Structuring a research area and defining its boundaries provide a 

better understanding, both for students and researchers. This is required 

because it’s not unusual to see “area gurus” be biased in their opinion due to 

their personal understanding and definition, while on the other side, new 

researchers feel lost and wander around without the “big picture” being offered to 

them. 

A well-founded taxonomy, with the proper characteristics, can further 

investigation in any field of study. A common language or terminology and the 

existence of a roadmap for a research area promote communication of new ideas 

and allow new discoveries to be identified and explored. A well determined 

taxonomy might also reveal where a probable new discovery, or a variation of an 

existing idea, can be found, since unexplored areas can be more easily 

identified.  

We strongly believe, that the existence of a solid, comprehensive scheme 

for classifying existing principles and recommended practices in conjunction with 

the existence of a framework that will not alter as technology evolves, is a basis 

that will guide researchers into new exploration of the area and as such, a 

taxonomy based on criteria that are loosely connected to specific technologies 

and practices but tight with principles, is required. 



26 

In order to accomplish this, we will present and analyze the existing 

taxonomies and the various definitions that exist in our research area.  

 

B. EXISTING SOFTWARE VISUALIZATION TAXONOMIES  
 

Throughout the years, various researchers have proposed a number of 

taxonomies, mainly for the classification of the Software Visualization tools or the 

domain of Software Visualization itself. These taxonomies will be presented in 

the following paragraphs.  

1. Myers 
Among the most well known and frequently referenced papers in the area 

are the two papers published by Brad A. Myers [27] [28], who realized early on, 

the increase in the interest in Software Visualization and the significant impact 

successful visualizations might have in the alleviation of software complexity. 

In his first paper published in 1986, he proposed two taxonomies, one for 

“Program Visualization Systems” and one for “Visual Programming.” 

Myers, defines a program “as a set of statements that can be submitted as 

a unit to some computer system and used to direct the behavior of that system,” 

a definition that can also be found in [66].  

Regarding the term program visualization, Myers does not provide an 

explicit definition but rather a descriptive one, stating that “in Program 

Visualization the program is specified in the conventional, textual manner, and 

the graphics are used to illustrate some aspect of the program or its run-time 

behavior [27].” 

Based on the above definition and the reasonable conclusion that PV 

systems accept as input a program made in the conventional textual manner, his 

taxonomy divides the area of Program Visualization using two axes, as shown in 

Table 1. The first axis answers the question “What is to be visualized?” The 

answer is influenced by the classical definition of the word “program” and hence 



27 

there are two sub areas defined, code and data. The second axis partially 

answers the question “How is it to be visualized?” This divides the area into static 

and dynamic visualizations not taking into consideration all the other issues such 

as the modalities, the interactivity, the medium, etc. 

According to this taxonomy, systems that will attempt to visualize a 

program will choose to visualize either the code or the data in a dynamic or static 

way or even a combination of those. 

 

 Static Dynamic 

CODE Flowcharts, SEE Visual, 

Compiler, PegaSys 

BALSA, PV Prototype 

DATA TX2 Display Files, Incense Two Systems, Sorting out Sorting, 

BALSA, Animation Kit, 

PV Prototype 

Table 1 Classification of Program Visualization Systems, as initially 
proposed by Myers [27]. In this taxonomy PV systems are 
classified by whether they illustrate code or data, and whether 
the produced visualizations are static or dynamic. 

 

Four years later, Myers published an updated version of his taxonomy [28] 

by expanding the term “program” to include the concept of “algorithm,” even if the 

initial definition of the term program was not altered. The new taxonomy has the 

third option of “algorithm visualization” across the first axis and is shown in Table 

2. 

As a consequence of this addition and assuming that an algorithm is 

actually a higher level of abstraction of a program, the term “software” is more 

closely approached with this taxonomy. 



28 

 Static Dynamic 

CODE Flowcharts, SEE Visual, 

Compiler, PegaSys, TPM 

BALSA, PV Prototype, 

MacGnome, Object Oriented 

Diagram, TPM 

DATA TX2 Display Files, Incense Two Systems, Sorting out 

Sorting,  

BALSA, Animation Kit, PV 

Prototype, ALADDIN, Animation 

by Demonstration, TANGO 

ALGORITHM Stills Two Systems, Sorting out 

Sorting, BALSA, Animation Kit, 

PV Prototype, ALADDIN, 

Animation by demonstration, 

TANGO 

Table 2 The updated classification of Program Visualization Systems 
proposed by Myers [28] classifying programs by whether they 
illustrate code, data or algorithm, and whether the produced 
visualizations are static or dynamic. 

 
2. Price et al. (1992) 
A couple of years after Myers published his updated taxonomy, a new 

taxonomy was proposed based on the observation that previously proposed 

taxonomies4 “use few dimensions and do not span the space of important 

distinction between systems [67].” 

The main purpose of this proposed taxonomy, which is based on the same 

definition as [27] & [28], was to provide a framework for the evaluation of 

Software Visualization systems, capable of providing a clear picture of the 
                                            

4 The authors mention two taxonomies: The one proposed in [27] & [28] by Myers and a 
taxonomy that has been proposed in [68]. The first taxonomy has already been presented while 
the latter is not a taxonomy but rather a list of attributes, required for an effective SV tool. 



29 

features and abilities of a specific system or of distinguishing the differences 

among systems we would like to compare. 

The basic concept behind this new taxonomy is the introduction of a 

number of characteristics for evaluating a Software Visualization system (in this 

case thirty such characteristics), which will cover the space of available features 

and capabilities and hence classify the available tools.  

The new taxonomy initially groups the characteristics of a Software 

Visualization system, initially in six main categories and then subdivides each 

group of characteristics into subcategories, and is shown in Table 3. Thus the 

taxonomy can be viewed as an expandable n-ary tree. 

Using this taxonomy, a Software Visualization system can be labeled 

based on its properties for each of the subcategories produced. 

According to the authors: 

• The Scope category describes some general attributes of a system 

• The Content category answers the questions “What is to be 

visualized?”  

• The Form category answers the question “What are the 

visualization elements?”  

• The Method category answers the question “How is the 

visualization specified?”  

• The Interaction category answers the question “How do we 

interact with and control the visualization?”  

• The Effectiveness category answers the question “How good is 

the visualization?”  

 

 



30 

TOP 

LEVE

Scope Content Form Method Interaction Effectiveness 

System/ 
Example 

Program/ 
Algorithm 

Visualization 

Medium Specification 
Style 

Navigation Appropriateness 
& Clarity 

Class of 
Programs 

Code 
Visualization 

Graphical 
Elements

Batch/Live Elision Experimental 
Evaluation 

Scalability Data 
Visualization 

Color Fixed / 
Customizable

Temporal 
Control 

Mapping 

Production Use

Multiple 
Programs 

Compile/ Run-
Time 

Animation Code 
Familiarity 

  

Concurrency Fidelity and 
Completeness

Multiple 
Views 

Invasive   

Benign / 
Disruptive 

 Other 
Modalities

Customization 
Language 

  

SE
C

O
N

D
A

R
Y 

   Same 
language 

  

Table 3  The Price et al. (1992) taxonomy at a glance 
 

3. Roman and Cox 
The same year a new taxonomy was proposed that is based on a more 

“relaxed” definition of program visualization that tried to offer a new perspective 

in the term. According to the authors [51], program visualization is defined as “a 

mapping from program to graphical representations,” and as such the proposed 

taxonomy takes into consideration the participants in the visualization process 

and also the domain, the range and the nature of the mapping itself.  

The proposed taxonomy is shown in Figure 2. More specifically, they 

distinguish three participants5  
                                            

5 It is important to mention the authors’ comments on the three roles of the proposed 
taxonomy: “While, these are only stylized roles meant to help us organize and present the 
material, the specialized expertise required of each role may actually lead in practice to a return 
division of labor among distinct individuals [51].” 



31 

• The programmer who develop the program, 

• The animator who defines and constructs the mapping, and 

• The viewer who observes the graphical representation. 

 

 

Figure 2 Taxonomic criteria and roles in program visualization as 
proposed by Roman & Cox [51] 

 
The taxonomic criteria are presented in three axes: 

• Scope: This category of criteria answers the question “What is to 

be visualized?” adding some interesting concepts in the answer, 

compared to the preceding taxonomies, such as the program’s 

control states and its execution behavior. 

• Abstraction: This term is introduced for the first time in the area 

(even if the concept is mentioned in [69] & [57] with the terms  

 

 



32 

“sophistication degree” and “content” respectively). According to the 

authors, here someone can find the answer to the question “What 

kind of information is conveyed by the visualization?”  

• Specification Method: The criteria included in this category, 

according to the authors, answer the question “How is the 

visualization constructed?” addressing things concerning the level 

of interactivity and some technical issues regarding the creation of 

the visualization itself (e.g. event or state transition oriented, need 

modification of code, etc.) 

• Technique: This area, according to the authors, deals with the 

answer to the question “How is the graphical representation used to 

convey the information?” mainly addressing effectiveness issues of 

the visual communication. 

Finally, we have to mention that for every category of taxonomic criteria 

there are a number of sub-criteria that may be used to classify a system. The full 

list of the proposed criteria is shown in Table 4. 

 

TOP-
LEVEL 

Scope Abstraction Specification 
Method 

Technique 

Code Direct 
representation 

Predefinition Sample Execution 
selection 

Data State Structural 
Representation 

Annotation Screen Design 

Control State Synthesized 
Representation 

Association Information Encoding 

Behavior Analytical 
Representation 

Declaration Presentation 
Enhancements 

SE
C

O
N

D
A

R
Y 

  Manipulation  

Table 4  Roman & Cox taxonomy at a glance 
 
 



33 

4. Stasco and Patterson  
The same year, another taxonomy for software visualization systems was 

proposed by Stasco and Patterson [70]. It follows the concept presented by 

Myers [28] but expands it into a four-dimensional space. The concept of labeling 

Software Visualization systems is being rejected and they promote the idea of 

showing “how different systems exhibit varying levels of the four dimensions 

[70].” 

More specifically the axes they propose to span the area of software 

visualization are: 

• Aspect: This axis is similar to the first axis presented by Myers [28] 

and almost the same as the “Scope” category of [51].6 This axis 

answers the question “What is to be visualized?” The difference is 

that under the concept of “aspect” the authors include all the 

different views that can be visualized; from simple textual views or 

diagrammatic ones (such as Nassi-Schneiderman diagrams) to 

data structures, flow of control, clauses and goals (for logical 

programming environments), list structures and function calls (for 

functional languages), including also algorithm animation. 

• Abstractness: This area deals with the level of abstraction that is 

used from the visualization tool to display the required information 

and as such, is similar to the second category of [51]. The authors 

mention the isomorphism of the displayed information to the 

components they represent; a concept that is also addressed by 

[51] under the term “Direct representation.” They also introduce the 

concept of “intention content [70]” defined as the “semantics or 

meaning behind otherwise context-free data and code” which 

reveals the fact that in visualizations of higher intention content, the 

                                            
6 We have to mention that although Stasco’s & Patterson’s taxonomy chronologically is later 

than the taxonomy proposed by Roman & Cox, the latter is not mentioned by the authors (they 
differ by four months in their publication dates) and hence any common results should be 
interpreted as independently found. 



34 

programmer’s purpose must be well defined and stated before the 

production of the visualization in order for the latter to be more 

effective.  

• Animation: According to the authors, “this classification dimension 

describes the dynamics or animation shown in software 

visualization systems [70].” The authors intentionally avoid the use 

of the terms static and dynamic and they explore this area, first by 

providing their own definition for animation and second by 

introducing the notion7 of valid configuration of a program as a state 

of the program that involves semantic meaning and that is 

reachable during execution. In other words, valid configurations 

provide the points during the execution of the algorithm that give 

meaning in terms of the program’s purpose and functionality in 

contrast to program’s valid states that may be reached between two 

different valid configurations. This classification category seems to 

partially answer the same question as the category “abstraction” of 

[51] but also partially the question of “specification method” of [51]. 

• Automation: This classification axis concerns required user 

intervention and effort for the creation of visualization pointing out 

also the fact that high levels of automation are not always possible. 

5. Price et al. (1993) 
One year after the publication of their initial taxonomy, Price et al. 

proposed, “a new taxonomy for systems involved in the visualization of computer 

software [50],” which is actually an enriched version of the previous one but this 

time characterized as “principled.” 

They first analyze some of the existing definitions and then provide their 

own, according to which “Software Visualization is the use of the crafts of  

 

                                            
7 The authors seem to introduce this term only for animated visualizations. 



35 

typography, graphic design, animation, and cinematography with modern human-

computer interaction technology to facilitate both the human understanding and 

effective use of computer software.”8  

Based on this definition they provide a Venn diagram for the area of 

Software Visualization showing how the various terms fit together, as shown in 

Figure 3.  

 

Figure 3 A Venn diagram showing how each of the existing (at that time) 
terms in the literature fit together[50].9 

 

Compared to their previous taxonomy, a new concept they introduce is the 

various humans’ roles that are involved in the process of visualization, dividing 

those roles in similar categories to Roman & Cox in [51]. More specifically they 

distinguish the following four roles: 

 
                                            

8 Their definition is based on the definition provided at [71] where Program Visualization is 
defined as “the use of the techniques of interactive graphics and the crafts of graphic design, 
typography, animation and cinematography to enhance the presentation and understanding of 
computer programs.” 

9 The reader is encouraged to see the updated diagram published in [43] 



36 

• The programmer who wrote the original program, 

• The SV software developer who wrote the system used to create 

the visualization, 

• The visualizer who constructs the visualization, and  

• The user who is the person using the visualization to understand 

the program, mentioning of course that a person can have more 

than one role. 

They also emphasize the fact that visualizations produced by any system 

are tightly coupled to the visualization’s final user’s need for a mental picture. 

Although the authors have analyzed the various roles users have in 

visualization, the changes they made in their taxonomy are not affected by this, 

but mainly concern the expansion, reorganization and redefinition of the 

taxonomy’s categories, with the terms used for the primary categories 

unchanged, as shown in Figure 4. 

 

Figure 4  Primary categories of Price et al. updated Software Visualization 
[50]. 

 

 



37 

According to the authors: 

• The Scope category, in this new taxonomy, describes the “range of 

software that can be handled by a given Software Visualization 

system,” and hence a new set of subcategories (as shown in Figure 

5) has been introduced, differentiating this category significantly, 

compared to the older one.  

 

Figure 5 Sub-categories for the Scope category of Price et al. updated 
taxonomy [50] 

 

• The Content category describes the subset of information that a 

particular Software Visualization system really uses in constructing 

the visualization, addresses time issues regarding the gathering of 

data required for the visualization construction and finally concepts 

related to the isomorphism of the presented visualization compared 

to the actual input. This category is based on the observation that  

 

 



38 

there is no tool that can visualize all of the information hidden inside 

software. One interesting point is that they differentiate program 

from algorithm in a user-centric way: 

 “if the system is designed to educate the user about a general 

algorithm, it falls into the class of algorithm visualization. If, 

however, the system is teaching the user about one particular 

implementation of an algorithm, it is more likely program 

visualization.”  

 
Figure 6 Sub-categories for the Content category of Price et al. updated 

taxonomy [50] 
 

• The Form category describes the characteristics of the output of 

the visualization and classifies aspects such as the target medium, 

the graphical elements used to produce the visualization, the  

 



39 

granularity offered, the elision capabilities, the number of 

simultaneous views of different aspects offered, etc. The sub-

categories of this category are shown in Figure 7.  

 
Figure 7  Sub-categories for the Form category of Price et al. updated 

taxonomy [50] 
 

• The Method category concerns the way visualization is specified 

separating Software Visualization systems describing the style in 

which the visualizer specifies the visualization and one describing 

the way in which the visualization and the program source code are 

connected.  



40 

 

Figure 8  Sub-categories for the Method category of Price et al. updated 
taxonomy [50] 

 
• The Interaction category seems to answer the same question as 

the one proposed in their previous paper but some of the sub-

categories proposed are reorganized in a different way as shown in 

Figure 9. 

 

Figure 9  Sub-categories for the Interaction category of Price et al. 
updated taxonomy [50] 

 

• The Effectiveness answers again a similar question to that of the 

previous taxonomy proposed by the authors but new sub-

categories have been added and some older ones have been 

altered as shown in Figure 10. 



41 

 

Figure 10  Sub-categories for the Effectiveness category of Price et al. 
updated taxonomy [50] 

 
6. Oudshoorn et al. 
The taxonomy proposed by Oudshoorn et al., follows a different approach 

than those previously presented. They accept the fact that the aim of any 

visualization is to assist the programmer in his mental model creation procedure 

regarding a piece of software and they propose a taxonomy “based on the notion 

of what a user can expect from program visualization, from the system point of 

view [53].” 

They define PV as “the use of graphical artifacts to represent both the 

static and dynamic aspects of a program [53];” a definition based on [28] pointing 

out the relation of the PV to the program development life cycle.  

They first present three aspects for program visualization as shown in 

Figure 11. The ”purposes” aspect concerns the use of the visualization that can 

be either for program understanding or debugging, or for performance analysis. 

The “mechanisms” aspect concerns the way visualization is produced and the 

“ideals” aspect concerns the required attributes for a useful visualization. 



42 

 

 

Figure 11  Program visualization aspects as proposed by Oudshoorn et al. 
[53] 

 

Their proposed taxonomy is shown in Figure 12 and is actually centered in 

the entities that are to be visualized, also taking into consideration the different 

uses as a second axis attached to every element to be visualized.  

 

Figure 12  Taxonomy proposed by Oudshoorn et al. [53] 
 

As a final note for this taxonomy, it is worth saying that, according to the 

authors, the program’s abstract representations created should be differentiated  

 

 



43 

from the associated pictorial representations, meaning that “how” they are 

displayed is coupled with the ideals of visualization and not with the abstractions 

themselves. 

7. Tilley & Huang 
During a project on reuse of legacy systems, the authors of [72], realized 

that the majority of existing Software Visualization tools, even if presented as an 

effective means in the fight against software’s increased complexity, have not 

proven that graphical representations are superior to the traditional textual ones. 

In their effort to create a comparison framework for evaluating the 

capabilities of the various tools in the context of their industrial partner numerous 

constraints, they developed a descriptive classification of program visualization 

techniques with main axes determined by the level of interaction between the 

users and the generated graphical documentation. 

Based on the fact that the maintenance of a legacy system requires the 

prior understanding of the software, they view program visualization as a re-

documentation process. 

They argue that a task-oriented classification of PV area will be more 

effective from the user’s perspective since it will “map common activities related 

to program understanding… to specific types of software visualization ([72] page 

227 emphasized).” They claim that no matter how the graphical views are 

produced, the real issue is that Software Visualization tools should address the 

everyday problems faced by people dealing with real large scale software 

projects, otherwise any effort will remain in the theoretical academic space. 

They first define Software Visualization as “a special type of information 

visualization that uses computer graphics and animation to help illustrate and 

present computer programs, processes and algorithms [72];” a definition based 

on the various aspects of software.10 

                                            
10 The provided definition can be found at Georgia’s Institute of Technology web site, at 

www.cc.gatech.edu/gvu/softviz, a department directed by Prof. J. Stasko. Last date accessed? 



44 

After providing a definition, they propose a task-oriented taxonomy, which 

is not strictly disjoint, since some tools may fall in more than one category. It is 

important to mention the authors’ comments on the three roles of the proposed 

taxonomy: “While these are only stylized roles meant to help us organize and 

present the material, the specialized expertise required of each role may actually 

lead in practice to a return division of labor among distinct individuals” in more 

than one category. 

More specifically, they categorize Software Visualization tools as follows: 

• Tools that produce static visualizations: They claim that these tools 

are more suitable for high-level representation of overall software 

architecture, files and functions dependency, etc. especially when 

those views can be presented in different level of abstractions. 

• Tools that produce interactive visualizations: They define as 

interactive visualizations the ones that allow the user to navigate 

the produced diagrams and claim that these kinds of tools, 

assuming they also provide the proper navigation facilities, provide 

significant aid in understanding the program’s behavior. 

• Tools that produce editable visualizations: According to the 

authors, editable visualizations are those that allow the user to 

make changes to the generated graph. The authors argue that the 

benefits of the use of such kind of tools are not yet proved to worth 

the cost of adoption cost. 

8. Maletic, Marcus & Collard 
The motivation of this taxonomy [73] was the authors’ observation that 

existing taxonomies “are somewhat skewed with respect to current research 

areas on software visualization,” and hence they propose a “number of 

realignments,” in order to address tasks of real-life software engineering projects 

by proposing a new framework. 



45 

The framework they proposed is based on five dimensions of software 

visualization, each of them relating to the what, where, how, who and why of the 

makeup of a visualization, naming their approach a task-oriented one since it 

emphasizes the tasks of understanding and analysis during development and 

maintenance. 

Their framework is based upon Card’s model for visualization [74] 

mapping a Software Visualization process directly to it. 

The five dimensions they define are: 

• Tasks: This dimension defines why the visualization is needed, in 

terms of software engineering tasks, classifying also Software 

Visualization tools regarding the particular engineering task they 

support. According to the authors, “this is the driving force behind a 

classification of software visualization systems.” 

• Audience: This dimension defines who will use the visualization in 

terms of users’ skill, experience, etc. 

• Target: This dimension defines the aspect of the software that will 

be represented. The authors consider as targets of visualization 

“the architecture, the design, the algorithm, the source code, the 

data, execution/trace information, measurements and metrics, 

documentation, and process information,” but also “measurements 

and metrics obtained from software, process information and 

documentation,” or even “attributes relating to issues such as data 

collection (i.e., time of collection, method of collection, invasiveness 

etc.) and issues relating to the programming language and 

environments (e.g., paradigm, concurrency, parallel processing, 

etc.)” 

• Representation: This dimension defines how the visualization is 

constructed based on the available information and is closely 



46 

related to the visual metaphor that is going to be used, the 

navigational aids for the user, etc. 

• Medium: This dimension concerns the medium that is going to be 

used to represent the visualization, knowing that different media 

(e.g. paper, single monitor, multiple monitors, etc.) offer different 

abilities for visualization. 

 
C. COMMENTS ON EXISTING TAXONOMIES 

 

Looking back in time, we can see that the term programming was used 

extensively to describe the process of creating computer applications. As the 

software’s complexity increased, programming has become a part of Software 

Engineering reflecting only one step in the whole process of software 

construction. This change in concepts is well reflected in the existing taxonomies. 

The oldest taxonomies started with a narrow scope of objects to be visualized 

and each new taxonomy proposed was a shift towards modern methods of 

Software Engineering. For example, Myers taxonomy only addressed program 

visualization and later algorithm animation was added, while the later taxonomy 

of Maletic et al. is referring to all the software artifacts and the tasks during the 

Software Engineering process.  

Another thing that we mention is that the complexity of the criteria used to 

classify Software Visualization systems, were changing over time with Myers 

proposing four categories and later taxonomies significantly raising the number of 

concerns in order to characterize a Software Visualization Tool. This evolution 

was necessary as new software visualization systems were emerging with a 

wider variety of capabilities and features, hence leading to more complex and 

detailed taxonomies.  

Another issue is that the majority of the existing taxonomies were made to 

classify Software Visualizations tools and not to be used as taxonomies for the 



47 

area itself. As such, they mainly represent the state of the art of the Software 

Visualization systems of their era, even if sometimes the approaches followed 

are tightly coupled to specific problems the authors faced during their research 

and development of Software Visualization tools and the solutions they 

proposed.  

In general, all of the existing taxonomies have their own merits and 

undisputable value, and have served well the area being the inspiration for a 

number of tools On the other hand, they do not reflect and do not cover the state-

of-the-art in software development with the exception of the taxonomy proposed 

by Maletic et al., which is based on a solid reference model and can clearly be 

categorized as an effort to describe the area and not specific tools, even if this is 

done in a very generic, “essay like” way. 

More specifically, Myers’ taxonomy is exactly what is proposed; 

“Taxonomy for Program Visualization Systems” with the terms program and 

Visualization defined in the context of this era, namely, program was a term 

referring to what today is called source code and Visualization was a term 

derived from the use of graphics to represent programs. Moreover, distinguishing 

them among four categories (whether the displays offered by the systems are 

static or dynamic and whether they visualize code, data or algorithm) is a correct 

but rather rough classification, compared to today’s tools and practices. 

Regarding Roman and Cox’s taxonomy, based on the given definition of 

Program Visualization and the approach to the term visualization at the beginning 

of their paper, they also restrict both the input and the output of the Software 

Visualization process, assuming that the source of Program Visualization is a 

program in textual form and the result of Program Visualization is always 

pictures. 

Nevertheless this taxonomy is the first one that is actually a taxonomy of 

the area and not of the various tools; it’s a taxonomy based on classification 

principles and not on tool characteristics and as such it is consistent with the 



48 

authors’ purpose while simultaneously making clear that a tools classification can 

be easily derived based on the domain, the range and the nature of mapping 

they support. It also addresses concepts that were not present in previous 

taxonomies, such as the different roles of the humans that participate in the 

process of visualization, the various level of abstractions at which a program can 

be seen and the well defined abstract taxonomical criteria that satisfactorily span 

the area. We believe that this is the first real taxonomy, applicable directly to the 

area and based on long-lasting principles and not characteristics or attributes of 

the Program Visualization tools.  

Stasko and Patterson’s taxonomy has many similarities with the previous 

one, and, taking into consideration that it was published the same year as the 

previous one and also that none of the authors refer to the other work, we 

assume that they have come to their results separately. Even if this taxonomy is 

more descriptive than the previous, we again see concepts like scope and 

abstraction having a central role and defining axes of classification by 

themselves. We should also mention that the authors point out that the software 

visualization tasks should be structured and further analyzed. Another important 

thing is that the notion of “views” is also widely used throughout the paper, 

denoting them as goals of every visualization tool, analyzing them further and 

revealing the various techniques that can be used. On the other hand, there are 

terms that are used in a slightly confusing way such as the aspect, which is not 

used purely to define what will be visualized but also includes why the 

visualization is created ([70] page 4). 

The first taxonomy proposed by Price et al. revealed the fact that we need 

multi-dimensional concepts in order to categorize Software Visualization systems 

using a set of thirty characteristics for evaluating them. It also introduced the 

need for a more principled and abstract way for approaching this problem, even 

though some of the proposed criteria are based on features and not principles.  

A significant fact about this taxonomy is that, like the previous one, is not a 

taxonomy of the area but rather “a taxonomy we propose for characterizing 



49 

program visualization systems ([67] page 3)” and of course serves the author’s 

motivation to “span the space of important distinctions between systems and 

allow us to discover where previous systems has succeeded or failed ([67] page 

2).” It could easily be argued that by separating the tools among each other, we 

also divide the area itself. We will agree that this may be partially correct but 

does not apply in general and in principle.  

On the other hand, categorization of tools based on what platform they run 

on is irrelevant to a principled taxonomy of the area. Desirable characteristics of 

a tool in terms of usability, performance, etc. and the degree they are present in 

a specific tool, should not be part of a taxonomy of the area. In addition we 

mention that the developer of a SV tool may choose to create a tool that 

produces different kind of visualizations for different artifacts and as such its 

functionality may span different sub-areas of the area, hence existing tools’ 

functionality is only an indication of the area and not a criterion by itself. Hence, 

this taxonomy may be viewed only as a SV tools taxonomy and not a SV 

taxonomy, since the categories resulted “are called characteristics because each 

of them characterizes a program visualization system in a particular way ([67] 

page 3).” 

A secondary observation for this taxonomy is that even if the authors 

adapt the term software, they limit software to programs, data and algorithms; 

they place the time that visualization data will be gathered, in the same level with 

code and data visualization, under the general category “What gets visualized?”; 

and that the authors point out that other modalities can be used to stimulate all 

the senses of the user even though they classify all those modalities in the same 

level with the ability of a tool to visualize using color, decreasing in this way the 

significance of these modalities. 

Their updated taxonomy is arguing directly that the term visualization 

should not be considered as restricting to visible images and they refer to the 

seventh definition found in [46] to amplify their position. It also contains a 

definition that has served the area for many years and has been massively 



50 

referenced, but also reflects the technological achievements of the era and 

restricts the possible use of SV. One weak point is that the authors claim that a 

Visual Language is a kind of “weak version” of SV but the way it is used, i.e. “to 

facilitate specification rather than understanding,” separates the two concepts 

and hence, for the SV tools that they present later, a strange characterization is 

introduced for those tools: “systems employing intentional SV.” The reference 

model and the conceptual basis they take into consideration for the derivation of 

their top level categories treats Software as a black box that is observed 

macroscopically; a model that is not suitable to encompass the evolution of the 

area. In general, this is another taxonomy that cannot be considered as a 

taxonomy of the area but a taxonomy for tools.  

The Oudshoorn et al. taxonomy is one of the more interesting taxonomies, 

even if less referenced compared to the others, that introduces many significant 

concepts. The first thing is that the authors clearly state that all the previous 

taxonomies deal with the categorization of tools and not of the area itself and 

consequently they propose the first taxonomy that deals with the area.  

Their approach of viewing the area through three different aspects is really 

interesting, especially if we consider their grouping of the various categories of 

past taxonomies, into purposes, mechanisms and ideals. For example all the 

required properties of a tool, in order to be useful, are nicely grouped under the 

category “ideals” or the various techniques that could be used under the term 

“mechanisms.” We believe that this way of spanning the area constitutes the 

basis of a taxonomy for the area that can be characterized as mutually exclusive. 

Even if their sub-categories cannot be considered as complete, after a post-

mortem analysis taking into consideration the effects of technological 

advancement and the evolution of the area, they still constitute a new approach 

for the area, at the time it was published, that can be easily expanded to 

accommodate new additions. 

 



51 

The major disadvantage of this proposal, is that it can’t be considered as 

complete, since there are areas not included, such as the various aspects of 

programs that could be visualized, i.e. it does not answer the question “what is to 

be visualized?” 

Tilley & Huang’s taxonomy, is basically a taxonomy for PV techniques that 

also points out a use of SV in a way not mentioned by previous taxonomies but 

reelecting reality; as a means for documenting software systems. A very 

significant conclusion from this fact is that the definition of SV should be very 

generic regarding its potential use, since we never know where it can be used in 

the future. 

Finally, the taxonomy proposed by Maletic et al., is the only approach 

dealing purely with the area and is not “tool oriented.” The authors had tried to 

answer the same basic questions as previous taxonomies, but in a more abstract 

and descriptive way. Still, there are questions that are not addressed such as 

“How will the visualization be constructed?” (in terms of the underlying 

mechanics and not in terms on how to present it to the user, with the latter being 

addressed), “How the required data will be extracted from the underlying 

software artifacts?”, “What are the user goals that the final visualization should 

support?” Their division of the area of Software Visualization, having as their 

basis the real task that needs to be accomplished, is a very effective, but rather 

abstract one. Even if they point out the significance of the roles of the users and 

the tasks they have to accomplish, the importance of the medium in which the 

representation will be rendered and many other crucial issues, they do not offer 

the required sub-categorization, making this taxonomy a rather descriptive and 

generic one, not capable of being used as a solid framework but only for 

triggering of new views for the area. 

We believe that the existing taxonomies do not efficiently cover the area of 

Software Visualization in the context of software development based on modern 

Software Engineering principles and practices and do not reflect the reality of 

software construction at large. They do not address problems faced during the 



52 

software development process, such as software evolution, software metrics etc., 

and most of all, they do not give the proper attention to the issues related to the 

user, like the various mental models that describe people involved in software 

development or the intents and the expectations of the users. 

We believe that existing taxonomies, are either very abstract and not 

complete or they were biased from their effort to categorize the existing tools, not 

actually describing the area itself, and there isn’t a single taxonomy, that contains 

all research questions of our field, and also connected with the everyday practice 

of Software Development under the prism of modern Software Engineering 

practices. The area of Software Visualization is still lacking a common conceptual 

framework that will encompass all concerns, methods and techniques and that 

will be used as the basis for further exploration but also as a deposit place for all 

existing techniques and ideas. This lack of a solid framework leads to the inability 

to identify abstract similarities with problems already faced within relevant 

research areas so that existing solutions or ideas could be transformed properly 

and applied to our discipline.  

 



53 

IV. SOFTWARE VISUALIZATION TOOLS  

A. INTRODUCTION 
 

During our research on existing SV tools, we realized that there exist so 

many of them that it would be impossible to present them all. So we decided to 

present a subset only, based on their historical significance or the new concepts 

and approaches they represent. Another important issue is that some of the 

systems presented herein, are based directly on the taxonomies proposed by 

their authors. Our description is brief, but we provide all the necessary links for 

each tool, so that the reader who would like to have a better insight can find them 

easily. 

The most important thing is that all visualization systems are unique 

entities, with their own merits, and at the current state, our intention is only to 

present them, so that we gain an insight on what aspects of software have 

already been targeted by the existing systems and the various approaches that 

have been explored so far. 

 

B. VISUALIZATION TOOLS 
 

1. Sorting Out Sorting (1981) 
Sorting out Sorting, was created by Ronald Baecker in 1981 [75], and is 

actually a video which uses animation of program data combined with an 

explanatory narrative that illustrates and compares nine sorting algorithms as 

they run on different data sets. This effort was among the first attempted to 

dynamically visualize the execution of algorithms and is considered the first 

major example of Algorithm Animation, having also practically proven the 

pedagogical value of animation in Computer Science. 



54 

For a more thorough review of this effort the reader is referred to [21] & 

[75] while a screenshot of the movie is shown in Figure 13.  

 

Figure 13 Linear Insertion: a) first comparison of the 4th pass, with the 
first 4 items already correctly ordered; b) final comparison of the 
4th pass; c) end of the 4th pass, after the 5th item has been 
moved to the front; d) data is sorted. Colors (shown as gray 
scale) denote “unsorted” and “sorted,” i.e., in the correct 
position thus far. Borders indicate that two items are being 
compared [75]. 

 
2. BALSA (1983) & BALSA II (1988) 
Marc Brown and Robert Sedgewick developed an interactive software 

visualization system named Brown University Algorithm Simulator and Animator 

(BALSA), in 1983 [25] & [76] that was successfully used as a teaching aid in 

Computer Science classes at the same university for a number of years. 

This system was able to display, in black and white, multiple simultaneous 

views of the animated algorithm’s data structures, and also multiple algorithms 

executing at the same time. Additionally the user was able to control the speed 

and the direction of the animation of the algorithm and also a pretty-printed  



55 

display of the source code was displayed, indicating also the currently running 

line of code. An example of a visualization produced by BALSA is shown in 

Figure 14. 

 

 

Figure 14  First-fit binpacking algorithm as visualized by BALSA [80] 
 

BALSA introduced the use of multiple views but, more important, the 

model of “interesting events.” The concept behind “interesting events” is that 

there are specific points (like the entry into a function or the access of a particular 

data structure) that are of great interest during the execution of the algorithm. 

This way, the typical procedural way to visualize the algorithm was substituted by 

a higher level of visualization, where specific parts of the code were 

encapsulated into meaningful operations. It is obvious that the visualization of the  



56 

whole procedural process could be achieved by assuming that each line of code 

is an interesting event. A detailed explanation of interesting events is provided at 

[77]. 

In 1988, Brown released Balsa-II [78] & [79], which provided additional 

scripting facilities giving the user the ability to annotate the implementation of the 

algorithm providing his own interesting events to be visualized, color animations 

and the ability to use sound in addition to visual representations.  

An example of visualization produced by BALSA-II can be seen in Figure 

15 

 

Figure 15  Quicksort in action in BALSA-II [80] 
 

3. Tango (1990) – XTANGO (1992) 
TANGO (Transition-based Animation GeneratiOn), was developed by 

John Stasko at the Brown University, introducing the path-transition paradigm for 

animation design and a framework for algorithm animation systems [81] &  



57 

[82], adopted by many later systems as their fundamental architecture, since it 

allowed for smoother animations and less overhead for the visualization 

designer. 

The path transition paradigm’s supporting architecture is based on the 

idea of manually instrumenting the source code (in this case C) with special calls 

that define transitions rather than steps, providing smoother animation. These 

transitions are defined in terms of trajectory, size, visibility, and color. 

Another significant characteristic of TANGO was the fact that it allowed a 

many-to-many relation between program source and the animation system, since 

it had the ability to receive events from several different program sources while a 

program source could supply events to several different animations. From a 

usability point of view, TANGO offered basic control of the view, allowing the user 

to pan, zoom and pause the animation.  

X-TANGO was a descendant of TANGO, being a version of the latter 

created on top of UNIX and the X11 Window System, that also included a large 

number of predefined algorithm animations [83]. A snapshot of an animation 

produced by XTANGO is shown in Figure 16. 

 

 
Figure 16  Snapshot if an animation for binpack produced by Tango [0] 



58 

For the interested reader, more info on XTango, and a downloadable 

version, can be found at the site of Georgia Institute of Technology [0].  

4. Polka (1993) – Samba(1996)  
POLKA was another tool introduced by John Stasko with its original 

version implemented in C++ on top of UNIX and the X11 Window System and 

later expanded in POLKA-3D [86] & [87]. 

POLKA offered an improved animation design model (requiring location, 

animation object and action to be performed), introduced explicit animation time, 

multiple animation windows and rich visualization / animation capabilities and 

semantic zooming, as shown in Figure 17. 

 

Figure 17  Semantic zooming in POLKA family [88] 
 

It can be used both as a general-purpose animation system for algorithm 

and program animations but also for animating serial programs. POLKA is a 

descendant of XTango system providing a more user-friendly interface and its 

own high-level abstractions. 

Samba was introduced some years later as an interactive, front-end 

graphical interface [89] but also added the important ability to read a series of 

simple ASCII commands with parameters (e.g. rectangle 3 0.1 0.9 0.1 0.1 blue 



59 

solid) that will be used to direct the animation, making Samba an interactive 

animation interpreter, able to visualize programs in any programming language. 

Later on, a Windows-native version of Polka, called PolkaW, was 

developed along with a Java version of Samba, called JSamba. More information 

on those tools are provided at Graphics, Visualization, and Usability Center, 

Georgia’s Institute of Technology site [0] while some examples of visualizations 

offered by those programs are shown in Figure 18. 

 

Figure 18  POLKA’s animation of a parallel minimum spanning tree 
program. The left view shows the graph and the spanning tree 
growing inside it. The right view shows the "closest" data 
structure maintained by the program [91]. 

 
Polka was later extended to provide 3D views using the Iris GL 3D 

Graphics library offering 3D primitives to the creator of the animation and the 

ability to control the position and orientation of the viewpoint.  

5. Zeus  (1991) 
Another descendant of BALSA is Zeus, also developed by Brown [92], [93] 

& [94] that provides more control of the data during runtime, support of program 

auralization using non-speech sound using the MIDI interface, a control panel as 



60 

an interface to the user offering many configuration facilities (start, stop, 

stepping, speed control, etc.) over the algorithms to be displayed and even the 

ability to create snapshots of the system’s current state that can also be used as 

restoration points for future executions. 

Zeus targeted mainly computational geometry algorithms, operating 

systems algorithms, hardware design algorithms and also multi-processor, multi-

threaded platforms. The data for the visualization produced were based on the 

annotation of code with interesting events. Examples of animations created with 

Zeus are shown in Figure 19. 

 

Figure 19  Algorithm animations produced by Zeus [88] 
 

In 1993, Brown and Nojark, extended Zeus to include 3D viewing 

capabilities [95]. The 3D version of Zeus includes three dimensional primitives, 

3D navigation through mouse interaction, as well as control panels to change 

rendering parameters and view specific parameters. 

6. SeeSoft (1992) – SeeSys (1994) 
SeeSoft, created by Stephen Eick, Joseph Stefen & Eric Summer Jr in 

conjunction with the 5ESS @Telecommunications Switch Project [96], was the 



61 

first tool to implement the representation of each line of code as a single colored 

line or a single colored pixel on the screen. Each line on the screen could be of a 

fixed size or with a length depending on the number of the characters contained 

in the respective line of the source code. A typical display created with Seesoft 

can be seen in Figure 20. 

 

 

Figure 20 A display produced from Seesoft displaying non indented code 
for different files, showing the relative size of the files, the age 
of code and how many times a file has been changed [96] 

 
This representation offers a significant reduction of the item to be 

visualized, increasing the capacity of the screen offering at the same time 

increased readability through the coloring properties and the advanced facilities  

 



62 

for direct manipulation, offered by the program. On the other hand the system 

had a limitation in scalability since it was able to display up to 50,000 lines of 

code on a 1280x1024 monitor. 

Another interesting characteristic was that it offered two levels of 

abstraction; the line representation and the display of the source code itself in a 

separate “code reading” window opened by the user as a result of a 

magnification of a specific area of the line representation. The approach 

proposed by Seesoft was very expressive and is still influencing Software 

Visualization tools today; it was similar to the view someone may get by printing 

all the source code, placing one file next to the other on a wall, and then walking 

away looking at the printed code!  

SeeSys [97] is the successor to SeeSoft, based on the same reduced 

representations, providing a space filling technique for displaying source code 

related statistics, generalizing the same techniques based on Johnson and 

Schneiderman’s work [98] on visualization of hierarchical data using treemaps. 

Motivated by a large communications software system, with several million lines 

of code are organized hierarchically into tens of sub-systems, several thousand 

directories, and hundreds of thousands of files, developed and maintained by 

AT&T, it is one of the few tools that found practical use in every day Software 

Engineering. 

The major benefit of SeeSys was that it related the statistics for the 

software to specific components, in this way placing the statistic in context. As 

shown in Figure 21 the key idea was to represent the system’s structure using 

rectangles that would be later filled with useful statistical information, offering a 

straightforward visual comparison. 



63 

 

Figure 21 Left pane: subsystem and directory statistics. Middle pane: a fill 
statistic for directories. Right pane: a zoomed view on 
subsystem Y showing file level statistics [97]. 

 
A typical screen produced by SeeSys can be seen in Figure 22. The 

system also offered a significant number of facilities for user interaction and 

techniques, making the tool very efficient. 

 

 

Figure 22 Bug rates by sub-system and directories as presented by 
SeeSys [97] 



64 

A later version of SeeSoft was intended for Web-based analysis of Large 

Scale Software systems [99]. In this version, SeeSoft is a part of a suite of tools, 

that aim to assist describing and understanding different aspects of software 

evolution by examining changes to documents and visualizing system artifacts 

such as source code and source version history. SeeSoft is implemented as an 

applet-based source code visualization system, based on the same reduced 

representations. A screen produced by the web-based version of SeeSoft can be 

seen in Figure 23. 

 

Figure 23 The SeeSoft text view showing code age according to a rainbow 
color scale [100].11 

 

7. CVSscan 
This is a tool used to visualize the evolution of source-code structure and 

attributes based on a line-based approach, similar to the one followed by 

SeeSoft, targeted for a variety of roles during the software.12 It is based in a 
                                            

11 Proprietary information has been blurred in the figures 
12 CVSscan is a part of the Visual Code Navigator suite, which contains four stand-alone 

applications. For more information, the interested reader is referred to the official web site of this 
suite @ http://www.win.tue.nl/~lvoinea/VCN.html. last date accessed? 



65 

concrete data model that classifies the status of line codes throughout a project 

life cycle as constant, modified, deleted, inserted, modified by deletion, or 

modified by insertion, and then using a 2D layout on a single display for a file’s 

entire evolution based on a fixed-length pixel line for all code lines, as seen in 

Figure 24. 

 

Figure 24  CVSscan representation approach for different versions of the 
same file over time [101]. 

 
To represent the various source code attributes, they use a variation of 

colors as shown in Figure 25, with one color scheme active each time. 

 

Figure 25 Colors used for encoding source code attributes. Represented 
(from left to right) are author, construct, and line status [101]. 

 



66 

For the vertical layout they use two approaches, the first is a file based 

with each line in the y axis representing a specific line number in each file and 

the second is a line based layout where each line in the y axis is the global line’s 

position (a unique label for every line written) offering two distinct views of the 

source code as seen in Figure 26. 

 

 

Figure 26  File based (top) and line-based (bottom) layouts of CVSscan for 
a file with sixty five versions [101]. 

 



67 

One of the most powerful characteristics is the multiple views that 

CVSscan offers. More specifically, it offers two additional metric views and a text 

view on selected code fragments as seen in Figure 27, offering also significant 

facilities for user interaction. 

 

Figure 27  Multiple code views in CVSscan[101]. 
 

8. SEE 
This attempt represents a different approach for program visualization. It is 

based on the observation that the textual program appearance has changed little 

since the first high-level languages were developed, with the simple ASCII 

representation being the dominant one. Their effort was focused on the visual 

appearance of traditional textual program representations, using a UNIX-based 

system for typesetting programs written in C [19], by combining human factors 

research with typography principles. The result of this typesetting process was a 



68 

kind of “program book” with cross-references and indices that facilitate navigation 

through the source code, as can be seen in Figure 28. 



69 

 

Figure 28  Four miniatures pages from a C program book as published by 
SEE [102]. 



70 

9. ShriMP – Creole 
SHriMP (Simple Hierarchical Multi-Perspective) started as a visualization 

technique, implemented in Tcl/Tk (a scripting language) and incorporated into the 

Rigi reverse engineering system in order to enhance its capabilities [103]. The 

initial concept was based on the implementation of fisheye views of nested 

graphs of software artifacts. SHriMP used two algorithms for manipulating large 

graphs: one for the creation of the nested graphs and one for the creation of the 

fisheye views that addressed the lack of notion for geometric distance between 

nodes by uniformly resizing the nodes of less interest and hence manage screen 

space for the focal node to grow. An example of the way nested graphs were 

presented from Rigi with SHriMP can be seen in Figure 29. 

 

Figure 29  Opening a node, the node’s contents are displayed inside the 
opened node and the user is descending the program’s 
hierarchy with more details being presented while preserving 
the context [103]. 



71 

The second version of SHriMP [104] was implemented in a graphics 

extention of Tcl/Tk called Pad++ and offered, in addition to the existing technique 

of context and detail, the ability to pan and zoom for nodes of interest. The 

former technique was implemented with the same fisheye view algorithm as the 

previous version of SHriMP that was preserving orthogonality and proximity 

among nodes. The latter technique was implemented in a way that zooming in a 

node, in the beginning context was removed from the display while at the end the 

source code was presented, as can be seen in Figure 30. 

 

Figure 30  Magnifying a simple C program, the context is removed until the 
max zoom level is reached, which is the source code [104]. 

 
The evolution of SHriMP continued with the creation of a Java based 

stand alone application for program visualization, based on the same principles 

as the previous versions but with additional capabilities [105] like geometric, 

semantic and fisheye zooming, the integration of a search tool that offered 

general search, relation search, artifact search facilities and a tracing relation 



72 

component that helped the programmer to search for various relationships such 

as data access and method calls using horizontal tree layouts. The final two 

versions consisted of the implementation using Java Beans technology [106] and 

integration with Java Development Tools included with Eclipse [107], named 

Creole.  

 



73 

V. SOFTWARE VISUALIZATION CHALLENGES 

Software Visualization, as a mean to reduce software’s inherent 

complexity, is among the top wishes of software engineers. Looking at the 

answers of the survey conducted by Koschke [8] we can see that 82% of the 

participants stated that Software Visualization can be a significant aid for their job 

but at the same time, they are asking for properties not present in existing tools. 

A closer look at the results and the requested characteristics of Software 

Visualization tools, will reveal issues never addressed from existing taxonomies 

such as the lack of considering users’ cognitive models and user needs, 

representations not closely related to user tasks and goals offering generic 

usability and not being oriented toward real problems. Participants in the survey, 

asked for improvements in GUI offered by the tools and ease of use, they asked 

for integration and interoperability, they asked for more efficient layout and use of 

screen space, they asked for automated matching between their intent and the 

visualization that is presented and much more. 

These issues are among some of the significant research questions that 

pose crucial challenges for the future of Software. It is true that many tools have 

been proposed in the past, claiming that they can be used as an effective means 

in the fight against software’s increased complexity but there is no proof that the 

representations they offer are superior to the traditional, textual ones. While there 

is no doubt that visual images can take advantage of the increased “bandwidth” 

of our vision, there are many times that artistically pleasing visualizations are not 

actually useful in understanding software. 

One of the most important challenges that still remains unaddressed and, 

despite its significance, not included as a concern in the existing taxonomies, is 

the question “Which visualization is supportive for each user’s task?” Matching 

available representations with users’ tasks, goals and needs is a fundamental 

issue if we want our tools to be really useful. Otherwise, no matter how 

impressive the offered visualizations may be, they will not serve the user but will 



74 

remain technical novelties. This question is only a part of the most important 

factor in every tool we make or representation we provide; the user. Only the last 

taxonomy, proposed by Maletic et al., distinguishes the importance of the user, 

but still not to the proper degree. 

Issues related to the tasks users have to accomplish, their goals when 

they are working on each of these tasks during the various phases of the 

software life cycle, the special characteristics of each individual user related to 

his expertise and his role in the development or maintenance process that induct 

different levels of abstractions and levels of detail, should be among the top 

priority research issues for our field.  

Closing the linguistic gap between the user and the system, supporting 

users at the conceptual level in the analysis of their information needs, in the 

formulation of an appropriate search strategy, and in the evaluation of the 

obtained results area also pose challenges for the field. 

As stated by Lethbridge and Singer, “many software visualization tools are 

developed without adequate attention to understanding the context of use for the 

technique, or without considering the cognitive abilities or load that is placed on 

the programmers by other activities [108].” We should stop expecting software 

engineers to adapt to our tools and try to make our tools adaptive to them. This is 

something that is also reflected in the existing taxonomies that serve, by 

definition, as the basis for the research of the area.  

Our next group of challenges deals with the visualizations we provide and 

their effectiveness in fulfilling user needs. There are many unresolved research 

issues related to which types of diagrams are most appropriate for aiding 

program understanding, debugging and all other users’ tasks. More specifically, it 

is unknown exactly which forms of graphical documentation are most suitable for 

each users’ needs and in which specific usage context. 

The layout problem is another challenge for the area; where to place the 

various shapes, their connecting lines and the color that should be used without 



75 

increasing the clutter and hence making a visualization useless. Aesthetics of the 

final product is a challenge; existing tools provide interesting and information-full 

visualizations, but many of them will not attracts user’s attention simply because 

they do not pay attention to the screen’s real estate problem.  

Another challenge, related to the representations offered, is to find the 

golden mean between graphical and textual representations. We should not 

condemn traditional textual representations as inefficient; they have served and 

are serving the area of Software Engineering having proven their value. The 

question should be “How can we complement the traditional textual views?” and 

not “How do we replace the traditional textual views?” Text is a familiar 

representation for all human beings and we should use its power in our 

visualization tools without trying to exterminate it having tools offering pictures in 

situations where text would be more economical exaggerating the “intuitive 

nature” of graphics. 

The interaction offered is another major challenge. Techniques like 

overview, zoom, filter, details on demand; requirements for customized 

visualizations with variable granularity offered and support of multiple views are 

out there but not coupled with user goals during the visualization process. 

Displays offered should be flexible, incorporating many different ways of 

visualizing the same concepts and not based on a couple different representation 

models. We also have to mention that many Software Visualization tools operate 

as standalone applications that often require data to be provided in a format 

different from the one developers are using.  

Finding metaphors that will be able to scale and visualize large data is 

another challenge. Knowing also that there are often visual representations that 

are physically larger than the text they replace, makes the challenge more 

difficult to solve. Limited screen space further increases the difficulty of this 

problem, making it hard to present information from real programs leading to one 

of the most commonly cited reasons for the failure of SV systems; scalability. 



76 

Mining the required data among the existing information in various 

software artifacts, is another challenge of great significance. There is much more 

information than existing tools are exploiting, leaving this responsibility to the 

user. 

Tools that rely on the modification of the software artifacts solely by the 

user are inappropriate for large software engineering projects. Of course 

gathering the necessary data for visualization is another challenge, along with 

their management and their communication throughout the various components 

of the Software Visualization system. Finding ways to extract the required data 

without interfering with software’s run-time behavior is important and is a 

challenge on its own.  

We believe that Software Visualization’s research should make a shift 

towards a more user oriented approach paying more attention to the cognition 

issues of the final recipients of our products; precious “know-how” should be 

incorporated from relevant research areas and become the driving forces for new 

tools. In our era, users are demanding ease of use, better interaction, more 

adaptive environments, more functionality and, more important, tools that are 

made for their needs and not as a demonstration for another novel metaphor. A 

neat and clear classification of concerns is required, since existing taxonomies 

do not offer this. 

We believe that the bigger challenge is understanding user needs and 

matching existing representation models to those needs. If we succeed in this, 

then the next step is to solve the technical issues on how to construct those 

visualizations combining various data sources and integrating various 

techniques. This is something that can be achieved only if we have a properly 

defined taxonomy that will provide a framework for discussion, analysis and 

research guidance by offering a systematic and systemic overview of the area, 

covering all the concerns and challenges. 

  



77 

VI. A MULTI-LAYERED FRAMEWORK FOR SOFTWARE 
VISUALIZATION 

A. INTRODUCTION  
 

Today, software is constructed in a more or less engineered fashion, in a 

way quite different from the past, making programming just a step of the whole 

procedure. There are other activities that take place such as software design, 

requirements analysis, computation of metrics, maintenance, etc., with none of 

the existing taxonomies covering issues faced during all those phases and 

consequently not incorporating the tools constructed to support those activities. 

We propose a multi-layered approach that is able to describe the whole 

area of Software Visualization at an abstract or more detailed level and also is 

expandable, by further dividing the existing layers into sub-layers.  

 

B. PROPOSED DEFINITIONS 
 

1. Computer Program  
Our definition will be based on the definition proposed by IEEE [31] but we 

will expand it so that it will be best fitted in the context of visualization and clearly 

separate program from software.  

We will define the term “computer program” as follows: 

A computer program, or simply program, is a series of computer 
instructions and data definition, expressed either in a form 
acceptable directly by a computer (machine language13) or any 
other human-readable form that can be translated into its machine 
language equivalent that, when submitted as a unit, will be 

                                            
13 For the term machine language, we accept the IEEE’s definition [31] according to which a 

machine language is “a language that can be recognized by the processing unit of a computer. 
Such a language usually consists of patterns of 1s and Os, with no symbolic naming of 
operations or addresses.” 



78 

executed or interpreted by a computer hardware, enabling it to 
perform computational or control functions to produce a result.  

2. Code - Source Code 
We will fully accept and utilize the definitions provided by IEEE in [31] 

where code is defined as: 

(1) In software engineering, computer instructions and data 

definitions expressed in a programming language or in a form 

output by an assembler, compiler, or other translator. See also: 

source code; object code; machine code; microcode. 

(2) To express a computer program in a programming language. 

(3) A character or bit pattern that is assigned a particular meaning; 

for example, a status code. 

and source code is defined as “Computer instructions and data definitions 

expressed in a form suitable for input to an assembler, compiler, or other 

translator. Note: A source program is made up of source code.” 

3. Algorithm  
For the needs of this thesis, we will adopt the IEEE definition in which [44] 

algorithm is defined as “A finite set of well-defined rules for the solution of a 

problem in a finite number of steps.” 

4. Software  
We believe that the definition of software, as provided by IEEE [31], is 

sufficiently descriptive and complete and hence we will accept it and define 

software as “computer programs, procedures, and possibly associated 

documentation and data pertaining to the operation of a computer system.” 

5. Software Visualization 
We believe that none of the existing definitions for Software Visualization 

is able to follow the evolution of the area, if we consider the recent research 

results. This is mainly caused by the existence of the word “visualization” that 

creates a biased perception for the area. 



79 

It is well known that the first steps in the area were aiming to produce 

visual representations of programs, their associated data and well-defined 

computer science related algorithms, in order to assist program or algorithm 

understanding. Later on, tools that uses also other human senses were 

introduced to assist program understanding and the response was to keep the 

term “visualization” by pointing out that it corresponds to the creation of mental 

models including all type of sensory modalities and not purely using visual 

objects. This claim was based on the last of seven definitions provided by [46], 

ignoring the previous six, that are more well known and generally adopted and 

also ignoring that the same source clearly states that the term is used with its 

“pictorial” meaning since the early 1880’s. We also have to mention that the roots 

of the word visualization can be traced back in Latin and are tightly coupled with 

the meaning of the English word “sight.” 

Moreover the use of the term visualization in other areas as a pure “visual” 

concept raises the question whether the same term can have such a different 

meaning depending on the content.  

With the existing terminology, phrases like “Software Visualization through 

sound, usually called program auralization [109]” should be accepted and the 

reader should accept that auralization is a sub-category of visualization. 

Moreover, with the current terminology, the process to assist humans to 

get a better understanding of the software, using representations based solely on 

human’s vision is called Software Visualization (based on the first six definitions 

of the word visualization provided by [46]) while the process to assist humans to 

get a better understanding of the software, using multi-modal approaches, is also 

called Software Visualization, but this time based on the seventh definition 

provided by [46].  

We propose a new term that reflects the current state of the field, 

encompasses all the existing tools and is broad enough to cover almost any type  

 



80 

of interface the future may bring. For us, what is now referred to as Software 

Visualization, should be called Software Noegenesis and should be defined as 

follows: 

Software Noegenesis is the process through which software is 
presented to humans, using appropriate interfaces, in order to 
amplify or assist the cognition of the software and its artifacts. 

We selected the term Noegenesis, instead of apprehension, perception, 

conception, conceptualization, understanding, etc., because noegenesis is the 

result of noetic (mental, intellectual) activities such as perception, understanding, 

conception, thought processes, cognition, etc. [46] 

Based on the new terminology and definition, in terms of modalities 

allowed, the area could be divided into Software Visualization, Software 

Auralization, etc., with Software Visualization having the meaning of representing 

software using only the visual sense, Software Auralization used for audible 

representations, etc., while also multi modal approaches are allowed after the 

combination of two or more of the sub-areas. 

Although we propose this term, we will continue to use the traditional term 

of Software Visualization, in order to avoid confusions caused by the fact that 

according to the proposed definition, Software Visualization is a sub category of 

Software Noegenesis and not the whole area. 

6. Taxonomy  
In theory, the development of a good taxonomy takes into account the 

importance of separating elements of a group (taxon) into subgroups (taxa) that 

may be mutually exclusive, unambiguous, and taken together, include all 

possibilities. In practice, a good taxonomy should be simple, easy to remember, 

and easy to use. 

Also we have to keep in mind that an important feature of a taxonomy is 

that it allows for expansion, if it is not already jointly exhaustive. 



81 

Having in mind the roots of the word, as described earlier, we define 

taxonomy as a jointly exhaustive classification according to a pre-determined 

system, used to provide a conceptual framework for discussion, analysis, or 

information retrieval.  

7. Comments on Proposed Definitions 
There are some consequences from the above definitions that should be 

mentioned: 

First of all, a program can have various forms considering the way it can 

be specified (e.g., algorithmic description, source code description, machine 

language description, machine code, etc.), and different level of abstractions in 

each form that are form dependable. This flexibility is required in order to achieve 

a highly efficient visualization that will satisfy user needs.  

Another consequence is that computer program may contain only the data 

definitions and not the data themselves that may be used as input or may be 

produced as output from the program. Data stored in databases that is known in 

advance that will be used from the program but not included in the program’s 

source code, are considered a part of the software and not the program. The fact 

that during a program’s execution there is an interaction between them and the 

program as a consequence of the instructions specified in the program, does not 

make them a part of the program itself. 

A third observation is that, the result of the execution/interpretation of a 

program may not always be the desired one, hence giving the visualization the 

required width to also deal with “incomplete” programs which are program in an 

early stage of their creation phase (e.g. in the context of OOP, some methods 

may still be empty or with decreased functionality) or when executed do not have 

the desired behavior. The only assumption is that in all cases the program is 

assumed to be syntactically correct. 

Consequently, from the definition of the program, the machine language 

representation of the program (the actual executable thing) is considered as a 



82 

different form of the program while the definition we accepted for source code is 

broad enough, compared to the definition previous researches are using or infer, 

without being bonded to any technological aspect. 

Another important issue is the fact that according to our definition for 

Software Visualization, the input is software and any of its artifacts. This way we 

remove the restriction posed by Myers [28] that the input is a program written in a 

textual format. We need to remove this restriction because if textual 

programming ceases to exist sometime in the future, there will be no reason for 

Software Visualization. Another concept that can be derived from our definition 

for Software Visualization is that there is no restriction on the means that can be 

used to simulate the cognitive model to the user, in contrast with the definition 

provided in [50]. 

One significant consequence that we have to point out is the differentiation 

between program and algorithm, which is very subtle. Since an algorithm is 

actually a set of instructions and a computer is a device capable of quickly 

performing any given instructions, when those instructions are specified using a 

program, someone can easily realize the relation between those two concepts. 

This is the reason that in the area of Computer Science, a program is usually 

seen as an algorithm, expressed in terms understandable by a computer or as an 

abstraction of a program and algorithm animation was traditionally a part of the 

so called Program or Software Visualization. 

We claim that an algorithm can exist and pose value on its own, without 

the need of a computer-related implementation since it can be implemented in 

many other ways and also because an algorithm exists in order to solve a 

specific problem (a computational problem in the case of Computer Science). In 

contrast, although a computer program is indeed a sequence of statements, it is 

not always an implementation of a specific predetermined well-known algorithm 

of the field of Computer Science, since there are many programs that simply do 

nothing, do not require any input, do not produce any output and do not 

manipulate any data or may implement algorithms that are outside the research 



83 

interest of Computer Science (e.g. the algorithm used to compute the monthly 

salary of an employer, or the tax a citizen has to pay). 

Taking this into consideration, and also the fact that when Computer 

Scientists and the relevant books speak about algorithms, they actually refer to 

specific pre-defined computational problems and not to any algorithm that solves 

any (computational or not) problem, we separate the areas of Software 

Visualization and Algorithm Animation, providing only an overlapping area as 

shown in Error! Reference source not found., where the size of the areas 

being unimportant. The overlapping area contains all the computer related 

implementations of the well-known predetermined algorithms such as sorting 

algorithms, etc. 

 

Figure 31  Proposed relation for the areas of Software Visualization and 
Algorithm Visualization 

 
This way we do not restrict Algorithm Visualization in computer-related 

implementations. In other words, we consider Algorithm Visualization as a 

separate research area aiming to visualize algorithms (mainly for educational 

purposes). Talking about algorithms closely tied to Computer Science, the area 

of Algorithm Visualization may use “computer implementations” of those 

algorithms and try to visualize those implementations. In this case, the 

implementations should be treated as domain specific computer programs and 



84 

may be visualized using any appropriate technique borrowed either from the area 

of Algorithm Visualization or the area of Software Visualization. 

On the other hand, in the case that a part (or even all) of a software 

contains an implementation of a well known computational algorithm (e.g. a 

sorting method) then this part may be visualized using any appropriate technique 

borrowed either from the area of Algorithm Visualization or the area of Software 

Visualization. 

This kind of separation may seems to be an approach different from the 

widely accepted and traditional one that is defined by Price, Baecker & Small in 

[43] and can be shown in Figure 32.  

 

 

Figure 32  A Venn diagram showing the terms in the SV literature as 
proposed by Price, Beacker & Small [43]. 

 
On the other hand, our approach, is consistent with the view the same 

authors had in [50]: 

The differentiation between program and algorithm is subtle and 
can best be described from a user perspective: if the system is 
designed to educate the user about a general algorithm, it falls into 
the class of algorithm visualization. If, however, the system is 



85 

teaching the user about one particular implementation of an 
algorithm, it is more likely program visualization. 

The last point is that we clearly differentiate Software Visualization from 

Visual Programming. According to our definition of Software Visualization, the 

term programming refers to a way to transfer the mental model that exist in the 

human’s mind into a “mental” model understandable by the computer; simply just 

another form that software can take. In the area of Software Engineering, using a 

programming language is usually one of the last steps in this procedure, followed 

by the compilation of the source code that produces the desired binary form that 

is the “computer understandable mental model.” There are other activities that 

take place before the pure programming, such as requirements analysis and 

software design. In that context, Programming (visual or not) and Software 

visualization are on the same path but differ in direction as can be seen in Figure 

33. 

 

 

Figure 33  Programming (visual or not) and Software visualization are on 
the same path but differ in direction 

 

This makes clear the line that distinguishes those two concepts and also 

shows how closely related they are. As a result of the fact that they both exist on 

the same path, they can share tools and “views.” In other words, a specific 

representation of the software can be used both for programming and for 



86 

visualization purposes and its actual use separates the two views. For example, 

when a tools automatically creates a UML diagram given the source code, as an 

aid of software understanding, this action is part of the Software Visualization 

process while when we construct a UML diagram in order to specify a program 

and then we use a tool to automatically convert it into source code, this action is 

a part of Visual Programming. 

 

C. FRAMEWORK DESCRIPTION 
 

Based on the definitions we provided earlier, we see Software 

Visualization in a novel way: as an interface between software, in any of its 

possible forms, and the corresponding human’s mental model for it, as shown in 

Figure 34.  

 

Figure 34  Software Visualization as an interface between human and 
software 

 

The two-sided arrows in Figure 34 represent only the interaction between 

the different parts during the process of Software Visualization and have nothing 

to do with the process of Visual Programming. This picture is derived after a top 

down analysis of Figure 33 and is actually one level of abstraction lower, 

representing only the Software Visualization part. 

We intentionally didn’t include any computer device or Software 

Visualization system in the above description. This way we describe the area in a 

flexible manner, allowing the software under visualization and the Visualization 



87 

System to co-exist in the same physical device or live in separate systems. This 

description also allows the Visualization system to be implemented in an all-in-

one manner or with in a more modular way with its parts living in different 

machines. This is necessary in order to address current trends in Software 

Development that involve development teams being geographically separate, 

and also to encompass the future of Software Visualization which we believe 

involves the integration of Software Visualization engines into IDEs or elsewhere. 

We divide the space “occupied” by Software Visualization in two main 

subspaces as can be seen in Figure 35, that are extracted observing the way we 

see Software Visualization; standing in between two distinct and significantly 

different entities, humans and software. 

 

Figure 35  The spaces of Software Visualization, in the higher level of 
abstraction 

 

1. Cognition Space 
This level contains all of the concerns related with user’s communication 

with the visualization tools and the visualizations produced by them. It also 

concerns all the required concepts to address these problems. It concerns all 

principles and practices related to the cognition of software from human beings 

during the software development process and all the facts regarding the 

interaction with the user’s side, we should take into consideration during the 

development of Software Visualization tools. Knowledge contained in this space 

can be practically used to relate available representation to specific user tasks 



88 

and user purposes and to extract new visualization metaphors and 

representations. 

This space contains questions like: “How do users understand software?”, 

“Who is the receiver of the visualization product?”, “What are the tasks he has to 

accomplish?”, “What are the intents of the user regarding a specific task?”, “What 

kind of interaction is required to assist the user to complete his task?”, “What 

techniques are available to increase the level of interaction and the level of 

understanding?”, “What are the principles that govern the communication with 

the user?” and many more.  

2. Technical Space 
This space concerns the required knowledge regarding the construction of 

the representations, the technical issues that are related with the data acquisition 

from the various software artifacts, the construction of the visualizations provided 

to the user and the construction of Software Visualization Tools. It encompasses 

all issues relevant to the implementation of the concepts of the cognition space. 

In order to construct a “view” for a software artifact we need data representing 

some properties of the software, transformed into a format more suitable for 

processing (if needed) and finally transformed into a representation, based on 

some pre-defined algorithms that define mappings between data and the basic 

building blocks of the representation. Here is the engine of a visualization. This 

space contains questions like: “What are the information encapsulated in the 

various software artifacts?”, “How can we extract information from the various 

software artifacts?”, “What other sources can we use to gain additional 

information for the software under visualization?”, “How can we integrate our 

visualization engine with other sources of data?”, “How can we integrate our 

visualization engine with other tools that support user’s tasks in a different way?”, 

“What problems arise during our communication with the software when we want 

to extract data for the visualization?”, “How can we solve the problems that we 

face during the communication with the software?”, “What kind of data are 

required to construct every representation?”, “How do we manipulate those 



89 

data?”, “What techniques for data analysis should we use and what information 

do we expect to extract?” and many more. 

3. Layers Overview 
Our framework splits the area of Software Visualization into five that will 

also participate in the visualization pipeline, as we will explain later but not 

necessarily all of them and in the same order that they are presented here. An 

overview of the five layers can be seen in Figure 36 based on our view of 

Software Visualization as an interface between users and software. 

 

Figure 36 The five layers of Software Visualization 



90 

4. User Layer 
This layer concerns all issues regarding the communications with the user, 

from the beginning of its interaction with the Software Visualization system when 

the user is phrasing a service request, until the end that he has finished using the 

system, looking to address usability issues, not only for the manipulation of the 

visualization product but for the communication with the system itself. This layer 

is defined by the Who, What, Why and How questions concerning the user; 

questions like “Why does the user need a visualization?”, “What information does 

the user expect to extract from the visualization presented?”, “How will the user 

interact?”, “Who will be the audience of our visualization and what are their 

special characteristics that we should take into consideration?” and many more. 

It’s obviously that significant answers for the questions of this layer should be 

scouted in related areas such as HCI, cognitive psychology, etc., and after the 

proper transformation, applied to our field.  

Things that should be taken into consideration before the creation of any 

visualization are the following:  

a. User Profile 
Each user of a visualization is a unique entity and should be treated 

as such. One of the factors that will make Software Visualization tools more 

effective and help them escape from the academia space and become a part of a 

Software Engineer’s everyday life, is the attention they pay to match each 

individual user’s needs. This effort starts by trying to understand the users of our 

tools. Issues that we should take into consideration are: 

• User Models: User modeling has been recognized, from other 

disciplines, as a very important and useful feature in several 

systems where the interaction with the user plays a crucial role. 

Concepts regarding the various user models, and how Software 

Visualization tools can be designed in a way that incorporates 

them, can be of great usefulness for our discipline, knowing that a 

big part of our tools are made to address the needs of a specific 



91 

audience. This way, flexible and profitable adaptations of the 

system behavior to the specific characteristics of the potential users 

of our tools can be made. Research on user modeling has been in 

a mature stage having made a lot of progress. The reader is 

referred to [110] - [114] as some examples of the applications of 

user modeling concepts in other disciplines, for existing 

classifications of this layer and how concepts from this area can 

help our discipline. Two very interesting attempts on mental 

modeling closely related to Software Visualization are made by 

Motta et al. [115] in an effort to model the behavior of an expert 

troubleshooter and by Storey et al. [116] where also a hierarchy of 

cognitive design elements are mentioned. 

• User Expertise: As already stated by almost all the previous 

taxonomies of the area, one major concern should be whether the 

receptor of the visualization is a naïve programmer, an expert 

programmer, a student, someone that is familiar with the software 

aspect or artifact to be displayed, in terms of knowledge of its 

construction and its history (e.g. the programmer who wrote the 

source code) and in terms of specification issues concerning this 

artifact (e.g. displaying a UML diagram, perfectly laid out, ignoring 

the fact that he is not aware of all the details and symbols of this 

diagram may prove to be useless). As mentioned by Singer et al. 

[117] novices have very different behavior when interacting with 

software such as less focus since they do not have enough 

knowledge about what to look at.  

• User Role: Another significant issue that governs the choice of the 

visualization to be presented in terms of what representation model 

will be used, what level of abstraction is the proper one, what 

details are to be visualized, etc., is the role of the user in the 

software development process. For example, if the project manager 



92 

and a programmer want to know about the evolution of the software 

in a project, different level of details will be required, probably 

forcing different representation models to be used.  

b. User Intents 
Many of the existing taxonomies, amplify the importance of 

matching the user needs relative to his intents when appealing to a visualization 

system, but user intents have either been limited to traditional programming tasks 

(e.g. debugging, execution traces, data structures, etc.), or to pedagogical 

reasons or scattered along different parts of the taxonomy. Even the latest 

taxonomy proposed by Maletic et al., is limiting user needs to traditional Software 

Engineering tasks, not providing a complete answer to the question “Why is the 

visualization needed?” and also not answering questions like “What are the 

user’s specific expectations and goals when he requests the visualization?”, 

“What are the user’s needs that the representation should fulfill?”, etc. User 

intention is a crucial issue, since it represents the reason a visualization is 

requested, and cannot be described simply by a generic description of the 

Engineering task to be accomplished. In order to fully determine user intention, 

the following issues should be taken under consideration:  

• User Engineering Tasks: Issues related to the tasks that software 

engineers have to accomplish during a software’s lifecycle, is a 

very significant parameter in the process of determining the proper 

visualization. In order to establish a common base for related 

issues, we propose a division by grouping tasks based on the major 

areas of Software Engineering as they are defined by The IEEE’s 

Software Engineering Body of Knowledge [118], such as Software 

Requirements tasks, Software Design tasks, Software Construction 

tasks, Software Testing tasks, Software Maintenance tasks, 

Software Configuration Management tasks, Software Engineering 

Management tasks, Software Process tasks, and Software Quality 

tasks. A comprehensive list of the subtasks associated with each 



93 

group and a further subdivision of them, is out of the scope of this 

paper since it will not further assist the presentation of the 

framework. Something that we want to point out is that the above 

classification of tasks provides the necessary space to our field to 

include areas such as the visualization of software metrics or the 

visualization of Software Evolution. These are two examples of 

software lifecycle activities, whose products or tasks are not 

covered from previous taxonomies, even if those important 

activities have their own representatives in the library of Software 

Visualization tools (e.g SeeSoft. GEVOL, EPoSee). The only 

exception is the taxonomy proposed by Maletic et al., even though 

the inclusion of these areas is done in a generic way. 

• User Goals: Each user of a Software Visualization system, no 

matter what task he wants to accomplish, has some goals that 

differ each time he requests a specific visualization. Those goals 

should be clearly identified and supported by the tools. User’s 

goals, according to Bergeron [119] can be broadly classified as 

analytical (user knows what he is looking for and the visualization 

will help him determine whether it is there and where exactly), 

exploratory (user does not know what he is looking for and he 

expects the visualization to assist him to understand the nature of 

the object visualized) and descriptive (the phenomena visualized 

are known and the user needs to present a clear verification of this 

phenomena). A further analysis will reveal operations at a more 

detailed level such as search, browsing, comparison, learn, 

understand, monitor, etc., revealing how viewer’s goals differ for the 

same representation. One of the most comprehensive 

classifications of user goals in terms of actions needed to be 

accomplished, is the one provided by Wehrend & Lewis in [120] 

that proposes a number of operation classes (identify, locate, 



94 

distinguish, categorize, cluster, distribution, rank, compare, within 

relations, between relations, associate and correlate). As a final 

comment, we would like to say that we wouldn’t be surprised if, in 

the near future, we see logical task description languages, similar 

to the approach proposed by Casner [121] for scientific 

visualization. 

c. User Interface 
In order to fulfill each individual user’s needs, attention should be 

paid to the interface that the user is exposed to. The ideals and the required 

properties for user interfaces along with the techniques used to facilitate the use 

of the system and make the communication with the system and its visualization 

products more effective, are concerns of great importance. All the existing 

taxonomies mention some aspects of the required properties and techniques for 

the interface of the visualization presented and the techniques we can use to 

make it more usable and effective, but they are mentioned in a scattered way 

with the exception of the Maletic et al. taxonomy. Moreover, no taxonomy 

mentions that the interface of the Software Visualization Tool itself is also under 

judgment and should comply with the results of the Human Computer Interaction 

discipline. It’s not only important what facilities a tool is offering but also how well 

it offers them. A third dimension, mentioned only in some of the existing 

taxonomies, is the interface provided by the Visualization System when direct 

access to the software artifact is requested from the user or is required for the 

production of the visualization. 

Concepts that govern the use of the system and its interface during 

the initial phase where the user phrases a request until the time he will stop using 

the system can be split into three groups: 

(1) Software Visualization Tool Interface. All concerns 

regarding an HCI approach for the Software Visualization tools themselves 

should be considered. There are things not yet considered by previous 

taxonomies such as the ability to store the created visualizations, their future 



95 

retrieval and automatic update, the ability to group and characterize user created 

facilities (similar to the “favorites” concepts of web browsers) or the level (and 

ability) of integration of the Software Visualization tool with other everyday tools 

used by software engineers, the level of the tool’s adaptability to specific users or 

even whether they provide mechanisms to authenticate users, control access to 

data and log identity of those accessing data (something that the majority of real 

life’s Software Engineering tools have as a standard) and many more. Another 

significant issue is the interface that tools are providing in cases when the user 

has to interact with the artifacts themselves (e.g. the user is instrumenting the 

source code on his own). There are cases that Software Visualization tools do 

not provide an interface for the artifact itself, forcing the user to use other 

applications in parallel. There are so many examples out there that we can 

adopt; like the example of the browsers that display an “artifact” (e.g. a pdf file) 

incorporating the interface of a specialized editor.  

(2) Visualization’s Interface. Many things have been 

said and written about the ideals and the techniques addressing the concerns of 

this layer. There exist principles and techniques that govern user navigation 

issues; user interaction issues; principles related to the cognitive economy of the 

final representation; proper presentation and reproduction of the presented 

visualization in terms of effectiveness such as consistency, simplicity, clarity, 

understandability, visualization economy, scalability, and much more. There are 

a number of techniques to increase the effective communication with the user 

from zooming techniques to fish eye views and from controlled distortive views to 

focus and context techniques, just to name a few, whose use is supposed to 

assist interaction with the visualization presented to the user. Despite all these, 

and due to the fact that no special focus have been given to the concerns of this 

layer, cases where pictures are used in situations where text would be more 

economical, exaggerating the “intuitive nature” of graphics, are not so rare. The 

main issues that should be take into consideration are: 



96 

• Interaction: The main issue is the degree of interaction between 

the user and the visualization. There are a number of methods & 

techniques used to improve the interactivity of a visualization. 

There are many descriptions for user needs during his interaction 

with a visualization, from the ones falling into the sphere of ideals, 

such as Schneiderman’s [122] proposal (overview-zoom-filter-

details on demand-relate-history-extract), up to more practical 

ones, such as the Wiss et al. [123] proposal (which expands 

Schneiderman’s categories at a lower level) or the approach 

proposed by Zhou & Feiner [124]. Also here are all other 

techniques such as contextual zoom, focus + content, the various 

implementations of the fisheye view, dynamic queuing using slides 

and many more that are used to realize all the user needs while he 

is interacting with a visualization. Mixing this knowledge with the 

classification of user goals, explained in the previous layer, a 

matching between user goals and the applicable technique is 

possible.  

• Lay out & Aesthetics: All concerns regarding the principles and 

practices on laying out the visualization primitives and how we 

order parts to create the whole, issues regarding the visualization 

frame such as the various graph layout algorithms that may be 

used, the principles and techniques for color & texture use that will 

facilitate our goal and will not cause a cluttered visualization, 

whether the objects placed on the screen are on a size that 

conveys information, the use of multiple views, etc. Issues like the 

smoothness of animations produced are also placed here since we 

consider animation as a visual discourse14 and as such the various 

displays are combined to produce the whole. 
                                            

14 The term is used in the way it is defined by Zhou & Feiner in [126] to denote a series of 
connected displays or a cohesive formation of a series of visual frames that will produce an 
animation. 



97 

• Medium: The medium that the visualizations are going to be 

presented enforces a significant number of constraints revealing 

research issues that need further attention. Presenting a diagram 

on a 17” monitor is quite different from presenting the same 

diagram on paper or an array of screens. It’s obvious that each 

medium has its own attributes and properties that should be taken 

into account when a visualization is created making the concerns in 

this layer a very significant one for the final result. 

5. Representations Layer 
The ultimate goal of a Software Visualization tool is to match user profile 

and intents to a specific set of representations; this is the only way to make a 

visualization tool useful and desirable. The importance of this task, throughout 

the visualization process, was realized very early on, as we can see in a classical 

book by D.A. Norman where the author states: “it is possible to determine the 

relationships between actions and results, between the controls and their effects, 

and between the system state and what is visible [125],” and Eisenstadt et al. 

[68] that state that “A major research theme common to the different possible 

modes and styles of software design is that of finding a (graphical) representation 

for program behavior which provides a good mapping to the way the 

programmers themselves tend to formulate solutions,” just to name a few. 

Since, after all, everything is about modeling, this layer contains all the 

concerns regarding available (or proposed) models we use to visualize software, 

the metaphors they are based on and their properties, the information that are 

conveyed from each of them, their advantages and disadvantages and the visual 

structures and representation they use along with the degree of the multi-modal 

approach applied to further assist the matching process.  

More important it addresses the problem of matching user profile and 

intents to a specific set of representations containing all the questions related to 

the options we have in our effort to transform the non-spatial entity of software 

into something, more or less, closer to human cognition. In other words, this layer 



98 

is defined by the What, Why and How questions concerning the representations 

that will be presented to the user having determined his profile and intents; 

questions like “How should we represent for the specific user and his intents?”, 

“What information can be conveyed by a visualization?”, “How can different 

modalities be combined to increase the information conveyed?” and many more. 

Concerns that deal with this layer include: 

a. Representation Models 
In our area, there have been efforts for a systematic approach, for 

classifying existing representations, like the one proposed by Brown [80] for 

algorithm animation displays, the classification proposed by Roman & Cox [51] 

and the one by Price et al. [50] while areas like Information Visualization and 

Scientific Visualization have a long history on classifying the available 

visualizations. 

One of the most noticeable proposals is the classification of the 

visual hierarchy proposed by Zhou and Feiner [126] that can be seen in Figure 

37. A classification that is also applicable for all kind of modalities. 

 

Figure 37  The Visual Hierarchy proposed by Zhou & Feiner [126] 
 

Each of the levels in the hierarchy can be subdivided based on the 

contents of each layer in the hierarchy. For example, the visual15 structures that 

                                            
15 The term visual here is used its basic meaning connected to human’s vision. 



99 

are available for representation of the various software artifacts, can be classified 

at a first level based on the existing approaches into seven categories:  

• Text 

• Tables 

• Charts 

• Graphs 

• Diagrams 

• Maps 

• Cartograms 

Each of the above categories, contains a number of available 

structures (e.g. for the diagrams category we know there exist flowchart 

diagrams, Nassi & Schneiderman diagrams, the various UML diagrams, etc.), 

but, most important, all the properties for each, such as its level of abstraction, its 

applicability for different kinds of data16 (which in our case will be the various 

software aspects that we will explain later), the underlying data model required 

for construction, its properties such as level of abstraction, its dynamics, etc.  

We believe that a future revisit of these issues is required, so that a 

complete taxonomy is created along with a clarification of the properties for each 

element and maybe an empirical evaluation for each of them. 

b. Representation Matching 
For a given user profile and intents, the challenge is to match them 

with the proper representations. Here we encompass all concerns that address 

this problem. In his classical paper [127], MacKinlay defines two criteria for this 

activity, expressiveness and effectiveness with the former being a criterion of “the 

capability of the metaphor to visually represent all the information we desire to 

visualize [73],” and the latter related to “the efficacy of the metaphor as a mean of 

                                            
16 An interesting approach that correlates each visual structure with various data can be 

found in [129].  



100 

representing the information [73].” Roth and Mattis [130] add another criterion for 

the appropriateness of a representation: the user’s goals in viewing the 

representation; a view that is missing from previous taxonomies. Eisenstadt et al. 

[68] name this ultimate goal the “goodness of mapping.”  

These should be the driving forces during research conducted for 

the matching of user needs to specific visualizations. We believe that “know how” 

from relevant disciplines can be easily applied to our discipline along with 

research for empirical evaluation regarding the various matching solutions.  

As a final comment, we have to mention that this matching can 

occur in a fully automatic way (the SV system will decide which visualization is 

the proper one), or in a semi-automatic way (the system will propose and the 

user will choose whatever he thinks is the fittest) and manually (in systems that 

the visualization is manually defined and constructed by the user, where the user 

clearly decides what he believe is most appropriate for him). 

c. Modalities Combination 
One of the main characteristics of every visualization presented to 

the user is which of the user’s senses it stimulates. Traditionally, the area was 

looking at stimulating only the vision of the users, but other approaches have 

emerged, taking advantage of other senses. This layer concerns the issues that 

arise when combining models that use different modalities to achieve a multi-

modal product. 

6. Mechanics Layer 
This layer concerns the required knowledge regarding the construction of 

the representations and the technical issues that are related to the data 

acquisition form the various software artifacts. This layer is defined by the What 

and How questions concerning the creation of the representations: questions like 

“How will we map the visualizations primitives with the existing data and vice 

versa?”, “What are the available data sources?”, “How should we extract 

information from the various software artifacts?”, “How will we interact with the 

software under visualization?”, “How can we integrate our visualization engine 



101 

with other sources of data?”, “How can we integrate our visualization engine with 

other tools that support user’s tasks in a different way?”, “What problems arise 

during our communication with the software when we want to extract data for the 

visualization?”, “What kind of data are required to construct every 

representation?”, “How do we manipulate the data we have gathered from the 

various sources?”, and many more. It’s obvious, that in order to answer some of 

the above questions, knowledge from related research areas should be extracted 

and after being properly transformed, applied to our discipline. 

This layer contains all concerns relevant to the implementation issues of 

the ideals defined in the upper level. In order to construct a “view” for a software 

artifact we need data representing some properties of the software, transform 

them in a format more suitable for processing (if needed) and transform them into 

a representation, based on some pre-defined algorithms that define mappings 

between data and the basic building blocks of the representation. Here is the 

engine of a visualization system and the part of our domain that deals with the 

mapping of the non-spatial data we have from the lower layer to a visual form 

using the proper models and abstractions. Issues contained in this layer can be 

grouped as follows: 

a. Mapping 
Mapping data to visual elements of the representations and actually 

constructing and rendering them is a rather complex activity. Primitive graphical 

objects (boxes, lines, circles, colors) or primitive audible objects (sounds, 

duration, tone, etc.) must be defined from the existing data and further combined 

to create a useful view. Specifications required for the creation of the 

corresponding representation model, must be known and well defined, e.g. if the 

user asks for a UML type diagram to observe the inheritance properties for a 

number of classes, knowledge related to the symbology of UML is required. This 

group deals with principles, practices and techniques used for transforming data 

into a representational framework (schema)17 that will be used for the 

                                            
17 As defined by Russel et al. [128]. 



102 

construction of a series of visual frames to be presented to the user. The other 

side of mapping is the transformation of user’s requests into data required to be 

extracted from the software under analysis. 

b. Data Acquisition  
Here we deal with all problems faced during our effort to extract 

useful information from the various software artifacts or other sources along with 

all issues concerning the communication of the Software Visualization systems, 

with the various sources of data (e.g. software artifacts that exist in the same 

physical location with the Visualization system or in a different geographical 

place). Techniques like post-mortem extraction, source code instrumentation, 

run-time extraction, etc., as well as their properties in terms of invasiveness, type 

and amount of information they provide, etc., are only some of the well known 

techniques, each of them with its own merits and appropriate for specific usages. 

Data that are acquired from the various sources are considered to be in a raw 

format, in the context that they are in the format provided by their source.  

c. Data Transformation 
The enrichment, analysis and transformation of the acquired data 

are activities of great importance in the creation of any visualization. Enrichment 

may contain activities from simple ones like time stamping up to more complex 

one like filtering. Analysis refers to activities such as metrics computation (if not 

provided by a data source), cross analysis for the data obtained from the various 

software artifacts (e.g. the combined analysis of data extracted from the 

execution of a program with data from a static analysis, etc.), while 

transformation deals with the conversion of the acquired data to a format that is 

more appropriate for the Visualization system. Other issues that should be taken 

into consideration are the concepts & principles regarding automated static 

software analysis, data hierarchical analysis, metadata extraction, data pattern 

recognition, etc. 

 

 



103 

• Data Organization 

Data acquired from the various sources should be spread along the 

various modules of the Visualization System on a per-demand or constant flow 

basis in order to be used for the creation of the visualizations. Concerns like the 

use of a bus-type architecture or a client-server architecture for the management 

of data along with their pros & cons, are included in this layer along with relevant 

concepts from knowledge organization and structuring. 

7. Software Layer 
As we have already mentioned, software can take various forms and can 

be seen with different views, each of them related to specific representations, 

from source code in its textual form (the most typical case) and bits and bytes to 

executable files up to higher level UML diagrams or plain text software 

documentation. This layer is defined by the What, and How questions concerning 

the software under visualization: questions like “What software aspect are we 

going to visualize?”, “How each software artifact participates in each distinct 

software aspect?”, “What are the information encapsulated in the various 

software artifacts?”, “What level of abstraction is each software artifact 

providing?”, and many more. The issues addressed by this layer can be grouped 

as follows: 

a. Software Aspects 
We can categorize the various aspects based on their dynamics 

and their object of observation. There are the static aspects of software under 

visualization such as its structure, its components, its metrics, etc. These aspects 

can be extracted without the need for observing the behavior of the software but 

concerns all those properties that are inherent in the software when it is resting in 

a repository.  

On the other hand, there are software aspects that require the 

software to be “alive” and executing and actually refers to its runtime behavior 

such as the real-time control or data flow, the dynamic call chain (we mainly refer 

to OOP where the dynamic allocation of objects make things more 



104 

unpredictable), the call hierarchy, the hardware utilization issues, the various 

views of causal relations, software’s behavior during test cases or debugging, 

etc. 

The declaration of the software aspect to be presented to the user 

is one of the primary concerns that should be clearly defined form the early 

stages of the visualization process, since it has a major effect on how things will 

be presented and what data need to be extracted. 

b. Software Artifacts 
The main source of data are the real software artifacts, containing a 

plethora of information that are sometimes unutilized and unexploited. All these 

sources should be categorized and carefully analyzed in the context of Software 

Visualization concerns, so as to discover and classify the information that they 

can provide combined with the software aspects the user requested to be 

visualized. These can be subdivided into three groups:  

(1) Hardware Artifacts. All artifacts that relate to the 

hardware of the Software System we want to visualize belong to this layer. The 

system’s platform, operating system, memory, number of processors, resources 

sharing policy, particular processor characteristics, quality of service for network 

links, and requirements for co-location of components to ensure performance 

and others exist in this layer. Caution should be taken that this layer contains 

only the facts for the hardware issues of the Software System under 

visualization. How those facts are affecting the data extraction phase, and how 

they impose restrictions on this process, is addressed by the appropriate sub-

layer of the Data Layer defined above. 

(2) Software Artifacts. All artifacts that relate to the 

software under visualization and the forms in which it is available along with any 

information that can be extracted by them, our ability to transform them from one 

form to the other, etc., are contained in this layer. This layer can be further  

 

 



105 

subdivided, based on the classification proposed by Koschke [131] in the 

Architecture Layer, Middle Layer and Lower Layer, each of them containing the 

corresponding information. 

8. Implementation Layer 
When it’s time to create a Software Visualization tool, there are decisions 

that we should take and trade off to balance, as in any other software. Issues 

such as the architecture & design of Visualization systems and their pros & cons, 

the resource allocation problem for the implementation phase on a Visualization 

System, issues concerning the specification of work flow inside Visualization 

Systems and how it can be optimized with respect to the resources available, 

how to enact the work at the required time, programming paradigms that may be 

used for the construction of Visualization Systems, instruction execution rates, 

cache utilization, processor utilization, concerns regarding operating system level 

activities, system calls, address space activity, communication library level 

activity and many more. 

  

D. VISUALIZATION CYCLE – VISUALIZATION PIPELINE – REFERENCE 
MODELS 
 

Having accepted that Visualization can be seen as an interactive 

communication between human and computer, with the Software Visualization 

system being the interface for the communication of the two parts, we have to 

define the visualization process.  

Duke et al., in [132] present a visualization cycle that embodies the roles 

of human and the system (in our case the Software Visualization system and the 

software) that can be seen in Figure 38.  



106 

 

Figure 38  Visualization cycle proposed by Duke et al. [132] 
 

In this diagram we see all the activities that take place during a 

Visualization, and as noted in [133] it‘s better to imagine this cycle as a spiral 

expanding out in time. More specifically, the various phases are: 

• human to human, dialogue between domain and/or visualization 

experts to explore the problem requirements 

• human to system, data to be visualized, required representation, 

and/or the process to be used 

• system to system, specification of services including data models 

and functional behavior 

• system to human, visualization product output to user for inspection 

It is obvious that in our case, we address the steps (b) & (c) & (d) but we 

may need to take into account that Software Visualization tools should also 

support the activity described in (a); a concept that does not exist in any of the 

previous taxonomies / frameworks of the area but can be addressed in our User 

Interface Layer and Implementation Layer. 

Now that we have an abstract framework for the description of the 

activities that take place during a visualization process, we need to zoom in and 

explore the visualization process itself, by establishing a reference model that will 

describe it in a less abstract but high level, We have to remember that, the 

purpose of a reference model is to specify the internal steps of the visualization 

process and not the technologies or the implemented components that 

participate in this process. 



107 

One of the most widely accepted reference models for the visualization 

process is the one that Haber and McNabb [134] proposed. It is a dataflow 

oriented reference model that describes the visualization process as "a specific 

sequence of data enrichment and enhancement transformations, visualization 

mappings and rendering transformations that produce an abstract display of a 

scientific data set." The reference model they propose can be seen in Figure 39. 

 

 
Figure 39  Haber & McNabb’s reference model [134]. 
 

The model proposed by Oudshoorn et al. [53] is shown in Figure 40 and is 

also a one-way model, mainly describing traditional types of Software 

Visualization process. 

 

Figure 40 Oudshoorn's transformation series to produce program 
visualization [53]. 



108 

This model is closely related to the model proposed by Card et al.[74], 

which can be seen in Figure 41. This model is been used as a basis for the 

taxonomy proposed by Maletic et al. [73]. 

  

Figure 41 Card's Reference Model [74]. 
 

Another interesting reference model has been proposed by P. Robertson 

and L. De Ferrari [135] and is shown in Figure 42. 



109 

 

Figure 42 Visualization Reference Model proposed by Robertson & De 
Ferrari [135] 

 
Finally, a multi-layered model has been proposed from Brodlie et al. [136] 

and is shown in Figure 43. This model concerns the special needs of Scientific 

Visualization over a grid of resources and is based in the Haber and MacNabb 

reference model. 



110 

 

Figure 43 Reference Model proposed by Brodlie et al. [136] 
  

The reference models mentioned above that describe the visualization 

process are either a one-way visualization pipeline or are not applicable in our 

case and hence we represent the visualization pipeline as a clearly two-way 

process involving the three parties of our view of Software Visualization as an 

interface, having also matched the corresponding activities from the visualization 

cycle, as can be seen in Figure 44. Our model has similarities to the one 

proposed by P. Robertson and L. De Ferrari, with the major differences being the 

fact that we concern the data acquisition process a part of the Software 

Visualization system and we include communication concerns with the various 

data sources. 



111 

 

Figure 44  The Software Visualization process as a two way 
communication 

  
The proposed visualization cycle is also based on our initial view of 

Software Visualization as an interface between human and software artifacts. In 

order to provide a better description of the proposed visualization cycle, we will 

provide two, rather extreme, examples: 

• The cycle starts with the system interacting with the user to obtain 

information regarding his profile and intents and then the user 

specifying his needs rather than by specifying a particular 

visualization. Knowing the characteristics of the user, the available 

medium, the software aspects that will participate and the available 

representations, the appropriate set of visualizations is defined. 

Then these visualizations are mapped to the required data 



112 

instructions, are defined and data are extracted form the software 

artifacts or other data sources. The data obtained are processed 

and then mapped to the primitive elements of the representation, 

rendered and presented to the user, which in turn interacts with 

them. Another cycle may be started by a simple “zoom” request by 

the user; a request that may be fulfilled by a “half cycle” (red dotted 

line) if the data required to construct the new visualization are 

present. In case the interaction is something more complex (like a 

completely new set of visualization, an additional view, etc.), this 

will cause a new full cycle to initiate. 

• The cycle starts with the user starting to instrument the artifact 

himself, hence all the layers are bypassed (blue solid line) since the 

user has decided about his needs, he has decided on his own what 

kind of views will fulfill his needs and he did the mapping of those 

views to the data that are required to be gathered. After completion 

of his job, all that is left to be done form the Software Visualization 

system, is to map the data obtained from the artifact to specific 

primitive elements (which can also be done manually by the user) 

and display the produced visualization to the user.  

 
E. CONCLUSIONS AND FUTURE WORK 

 
It is indisputable that Software Visualization is not a part of everyday 

practice for the majority of people involved in Software Engineering. We believe 

that the best way to overcome this reality is to dig deep, reach the roots of our 

discipline, face the reality and reframe our research in a way that will enforce 

better cooperation with other research areas and better transfer of “know how.” 

 

 



113 

In this effort, we proposed a new name for our discipline that clears any 

ambiguities that may exist. We also proposed a new framework based on the 

view of Software Visualization as an interface in between human cognition and 

the abstract world of Software. 

We believe, that our approach breaks the bonds of the traditional concepts 

of Software Visualization that kept it loosely coupled with the Software 

Engineering reality, and defines a new framework that will allow for the 

construction of new types of Software Visualization tools. We propose a flexible 

approach, easily expandable that can adopt new principles, practices and 

technologies. Splitting the area into layers, we have a taxonomy that is mutual 

exclusive and complete. We have an ordered separation of the issues faced and 

we gather all relevant knowledge in the same place. Our framework can serve as 

a map for a newcomer to the area, as a body of knowledge and as a guide for 

research and, on the other hand, as a concrete framework for the relation with 

other disciplines and knowledge exchange. The way we laid out the layers is 

close to the visualization pipeline to simulate the creation of new multi-modular 

types of architecture for Software Visualization tools. 

As clearly stated by Brooks, there is no “silver bullet” that will solve all of 

our problems regarding the complexity of software. Knowing that, we see 

Software Visualization as another tool in our hands. What we propose is that we 

should change the way Software Visualization systems are made. We should not 

expect a single tool to answer all the questions but for an integrated set of tools 

that can answer a larger number of questions.  

There are many specialized tools that implement some of the required 

functionality, but usually in a standalone fashion. Based on the layered approach 

we expect to see architectures that delegate the various concerns described in 

the different layers to existing tools and finally integrate the visualization engine 

into existing, broadly accepted tools to the Software Engineering community. 

Having many different tools in a toolbox is not always the best solution and this is 

one of the reasons that people do not accept the majority of the tools produced 



114 

so far. The answer to this is integration. With the proposed layered framework for 

our discipline, this is clearer, since each specialized tool can find its own place in 

one or more layers. 

Another benefit of the proposed multi-layered approach is that it creates 

the vital spaces for new technologies to be integrated with existing ones. All kind 

of representations and sensory modalities are allowed; from the traditional textual 

to pictorial, aural or even the transmission of electromagnetic waves using a 

brainwear device, is assumed to be another form that a part of the software can 

take. 

We do not claim to be the first evangelists of modularity as the future of 

the field. Nielson et al. [137], many years ago claimed that modularity in design is 

necessary if we want to create visualization systems that are really useful for a 

wide range of users that gives us a wider range of tasks. A statement made from 

a researcher in the area of Scientific Visualization that holds equally to our field.  

Another significant issue that presents great importance, both for the 

research society but also for the Software Engineering practitioners, is the area 

of Software Visualization tools evaluation. We believe that if our framework is 

used toward this direction both a quantitative and qualitative approach for all 

concerns may be achieved. A full expansion of our multi-layered model, can 

serve as a quantitative model for evaluating tools, with the same labeling 

concepts proposed by Price et al. [50], and at the same time can serve as a 

guide for a qualitative analysis of each of these areas of concerns. 

It’s clear that before this is achieved we have to agree on some standards 

and this is another interesting area for future work. Standards on the 

classification of the existing representations and the information that can be 

conveyed from each of them, standards regarding the communication protocols 

between the different modules or applications and many more. 

 



115 

Of course, we know that this approach is a means to an end and not an 

end to itself. A future revisit of the proposed layers is required, in order to provide 

a more detailed description of the concepts & principles including in each of 

them.  



116 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



117 

LIST OF REFERENCES 

1. Wirth, N. (1971). Program Development by Stepwise Refinement, 
Communications of the ACM 14(4), April 1971, 221-227. 

 
2. Dahl, O.-J., Dijkstra, E.W., and Hoare, C.A.R. (1972). Structured 

Programming. Academic Press. 
 
3. Parnas D.L., "On the Criteria To Be Used in Decomposing Systems Into 

Modules," Communications of the ACM, Vol. 5, No. 12, December 1972, 
pp. 1053-1058. 

 
4. Booch Grady, Object-Oriented Design with Application. 

Benjamin/Cummings, 1991. ISBN: 0-8053-0091-0. 
 
5. Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns. Elements 

of Reusable Object-Oriented Software. Addison Wesley, 1998. 
 
6. Kant’s Immanuel, Critique of Pure Reason. In Commemoration of the 

Centenary of its First Publication. Translated into English by F. Max 
Mueller (2nd revised ed.) (New York: Macmillan, 1922) p. 41. 

 
7. Poilâne Lionel & Poilâne Apollonia, Le pain par Poilâne -. - Paris : le 

Cherche Midi, DL 2005 - 1 vol. (389 p.) - ISBN 2-7491-0143-3 (rel.): 35 
EUR. - EAN 9782749101439.  

 
8. Koschke R.. Software visualization in software maintenance, reverse 

engineering, and reengineering: A research survey. Journal on Software 
Maintenance and Evolution, 15(2):87--109, 2003. 

  
9. Bassil S. and Keller R., Software Visualization Tools: Survey and Analysis. 

In 9 th International Workshop on Program Comprehension (IWPC 2001).  
 
10. Goldstein, H. H. & von Neumann, J. (1947). Planning and Coding 

Problems of an Electronic Computing Instrument. In A. H. Taub (Eds.), 
von Neumann, J., Collected Works (pp. 80-151). New York: McMillan 

 
11. Nassi, I. and Shneiderman, B. 1973. Flowchart techniques for structured 

programming. SIGPLAN Not. 8, 8 (August 1973). 
 
12. Haibt, L. M. (1959). A Program to Draw Multi-Level Flow Charts. In 

Proceedings of The Western Joint Computer Conference, 15 (pp. 131-
137). San Francisco, CA:. 

 



118 

13. Knuth, D. E. 1963. Computer-drawn flowcharts. Commun. ACM 6, 9 (Sep. 
1963), 555-563 

 
14. Roy P. and St-Denis R., Linear Flowchart Generator For a Structured 

Language, SIGPLAN Notices (ACM) 11, 11, (Nov. 1976), 58--64. 
 
15. Naur, P. (Ed.) (1963). Revised Report on the Algorithmic Language 

ALGOL 60. Communications of the ACM 6(1), 1-17. 
 
16. Conroy, K. and Smith, R.G. (1970). NEATER2: A PL/I Source Statement 

Reformatter, Communications of the ACM 13, 669-675. 
 
17. Hueras, J. and Ledgard, H. (1977). An Automatic Formatting Program for 

Pascal. SIGPLAN Notices 12(7), 82-84. 
 
18. Knuth D., “Literate Programming”, The Computer Journal, Vol 2, No , 

1984,pp97-111. 
 
19. Baecker, R.M. and Marcus, A. (1990). Human Factors and Typography for 

More Readable Programs. ACM Press, Addison-Wesley. 
 
20. Knowlton, K. C. (1966). L[6]: Part II. An Example of L[6] Programming. 16 

mm black and white sound film, 30 minutes. Murray Hill, NJ: Technical 
Information Libraries, Bell Laboratories, Inc. 

 
21. Baecker, R.M. (1981): With the assistance of Dave Sherman, Sorting out 

Sorting, 30 minute colour sound film, Dynamic Graphics Project, 
University of Toronto, 1981. (Excerpted and 'reprinted' in SIGGRAPH 
Video Review 7, 1983.) (Distributed by Morgan Kaufmann, Publishers.). 

 
22. Baecker, R.M. (1968). Experiments in On-Line Graphical Debugging: The 

Interrogation of Complex Data Structures, Prof. First Hawaii International 
Conference on the System Sciences, January, 1968, 128-129. 

 
23. Booth, K.S. (1975). PQ Trees, 12-minute color silent film. 
 
24. Lieberman, H. (1984). Seeing What Your Programs Are Doing, 

International Journal of Man-Machine Studies 21(4), October 1984, 311-
331. 

 
25. Brown, M.H. and Sedgewick, R. (1984b). A System for Algorithm 

Animation. Computer Graphics 18(3), 177-186. 
 
 



119 

26. Ronald Baecker and Blaine Price. The Early History of Software 
Visualization. In John Stasko, John Domingue, Marc H. Brown, and Blaine 
A. Price, editors, Software Visualization, chapter 2, pp. 29--34. MIT Press, 
1998. 

 
27. Myers, B. A. 1986. Visual programming, programming by example, and 

program visualization: a taxonomy. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems (Boston, 
Massachusetts, United States, April 13 - 17, 1986). M. Mantei and P. 
Orbeton, Eds. CHI '86. ACM Press, New York, NY, 59-66.  
 

28. Brad A. Myers. Taxonomies of Visual Programming and Program 
Visualization, Journal of Visual Languages and Computing. vol. 1, no. 1. 
March 1990, pp. 97-123. 

 
29. Brooks Frederick, The Mythical Man-Month: essays on Software 

Engineering, published by Addison Wesley Longman Inc, September 
2004(24th edition), ISBN 0201835959. 

 
30. 17 USC § 117. 
 
31. IEEE Std 610.12 – 1990. 
 
32. IEC1131-1, 1992; IEC 902, 1987. 
 
33. Musa, J., Iannino, A., and Okumoto, K. (1987). Software Reliability, 

Measurement, Prediction, Application. McGraw-Hill Book Co., New York. 
 
34. Smith, D.J., and Wood, K.B.: `Engineering Quality Software: a review of 

current practices, standards and guidelines including new methods and 
development tools', 2nd edition (Elsevier Applied Science, 1989. 

 
35. Turing, A.M. (1950). Computing machinery and intelligence. Mind, 59, 

433-460. 
 
36. Tukey J.W., "The Teaching of Concrete Mathematics," American 

Mathematical Monthly, 65, No. 1. (January 1958), p. 2. 
 
37. The American Heritage® Dictionary of the English Language, Third Edition 

Copyright © 1992, 1996, by Houghton Mifflin Company. 
 
38. Software Engineering: A practitioner’s Approach by, published by 

McGraw-Hill Professional Mar 1, 2004 ISBN: 007301933X. 
 
39. UK MoD, Def Stan 00-55,1997. 



120 

40. ESA, ECSS-P-001A, 1997. 
 
41. Introduction to Algorithms (Second Edition) by Thomas H. Cormen, 

Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein, published by MIT 
Press and McGraw-Hill. 

 
42. Introduction to computing and algorithms by R.L. Shackelford , published 

by Addison Wesley Longman Inc, 1998 , ISBN 0201314517. 
 
43. Price B., Baecker R., and Small I., An Introduction to Software 

Visualization. In John Stasko, John Domingue, Marc H. Brown, and Blaine 
A. Price (Eds), Software Visualization, chapter 1, pp. 3--27. MIT Press, 
1998.  

 
44. ANSI/IEEE Std 1084-1 986 IEEE Standard Glossary of Mathematics of 

Computing Terminology. 
 
45. Compact Oxford Dictionary, publicly available online at  
  http://www.askoxford.com/concise_oed/algorithm?view=uk 

September 2006. 
 
46. Oxford English Dictionary Online (subscription required). 
 
47. The American Heritage® Dictionary of the English Language: Fourth 

Edition. 2000. 
 
48. Merriam-Webster Online Dictionary, 2006. 
 
49. MCCORMICK, B. H., DEFANTI, T. A., AND BROWN, M. D. Visualization 

in scientific computing---A synopsis. Computer Graphics & Applications 7, 
7 (1987), 61—70. 

 
50. Price B., Baeker R.M., Small I., A Principled Taxonomy of Software 

Visualization. Journal of Visual Languages and Computing, Vol.4 No.3, 
pp.211-266, September 1993. 

 
51. Roman, G. and Cox, K. C. 1992. Program visualization: the art of mapping 

programs to pictures. In Proceedings of the 14th international Conference 
on Software Engineering (Melbourne, Australia, May 11 - 15, 1992). ICSE 
'92. ACM Press, New York, NY, 412-420. 

 
52. Diehl, S. 2005. Software visualization. In Proceedings of the 27th 

international Conference on Software Engineering (St. Louis, MO, USA, 
May 15 - 21, 2005). ICSE '05. ACM Press, New York, NY, 718-719.  



121 

53. Oudshoorn M. Widjaja H.W., Ellershaw S., Aspects and Taxonomy of 
Program Visualisation. In P. Eades and K. Zhang (editors), Software 
Visualisation, Chapter 1. World Scientific Press, Singapore, 1996. 

 
54. Ellershaw, S. & Oudshoorn, M. (1994), Program visualization - the state of 

the art, Technical Report TR 94-19, Department of Computer Science, 
University of Adelaide. 

 
55. Baecker R.M., Enhancing Program Readability and Comprehensibility with 

Tools for Program Visualization, in Proceedings of the 10th International 
Conference on Software Engineering, pp. 356-366, April 1988. 

 
56. Petre M., Blackwell A.F., and Green T.R.G., Cognitive Questions in 

Software Visualisation, In J. Stasko, J. Domingue, B. Price, and M. Brown 
(Eds.), Software Visualization: Programming as a Multi-Media Experience, 
MIT Press, January 1998. 

 
57. Brown M.H., Perspectives on algorithm animation, Proceedings of the 

SIGCHI conference on Human factors in computing systems, pp. 33-38, 
May 15-19, 1988, Washington, D.C., United States. 

 
58. Kerren A. and Stasko J.T., Algorithm Animation - Chapter Introduction. In 

S. Diehl (ed): Software Visualization, volume 2269 of LNCS pages 1-15. 
Springer, 2001. 

 
59. Burnett M., Visual Programming. Encyclopedia of Electrical and 

Electronics Engineering (John G. Webster, ed.), John Wiley & Sons Inc., 
New York, (1999). 

 
60. Golin E. J. & Reiss S. P., The Specification of Visual Language Syntax, 

IEEE Workshop on Visual Languages, (1990), pp.105-110. 
 
61. McIntyre D. W. and Glinert E. P., Visual Tools for Generating Iconic 

Programming Environments, (1992). 
 
62. Stanford’s Encyclopedia for Philosophy  
 http://plato.stanford.edu/entries/aristotle-metaphysics/#Cat 

September 2006. 
 
63. Wikipedia, On line Encyclopedia, http://en.wikipedia.org/wiki/Taxonomy 

September 2006. 
 
64. ANSI/IEEE Std 1002-1987. 
 

 



122 

65. What is?com. IT on-line encyclopedia, 
http://whatis.techtarget.com/definition/0,,sid9_gci331416,00.htm  
September 2006. 
 

66. Dictionary of Computing, Oxford:Oxford University Press,1983. 
 

67. Price B., Baeker R.M., Small I., A taxonomy of software visualization. In 
Proceedings of the 25th Hawaii International Conference on System 
Sciences, volume II, pages 597--606, Kauai, HI, January 1992. 

 
68. Eisenstadt, M.; Domingue, J.; Rajan, T.; Motta, E., "Visual knowledge 

engineering," Software Engineering, IEEE Transactions on, vol.16, 
no.10pp.1164-1177, October 1990. 

 
69. N. C. Shu, Visual programming, Van Nostrand Reinhold Co., New York, 

NY, 1988. 
 
70. Stasko, J. T. & Patterson, C. (1992). Understanding and Characterizing 

Software Visualization Systems. In Proceedings of IEEE 1992 Workshop 
on Visual Languages, (pp. 3-10) New York, 15-18 September 1992 : IEEE 
Computer Society Press. 

 
71. Baecker R.M., 1986, An Application Overview of Program Visualization. 

Computer Graphics: SIGGRAPH '86, 20 (4):325, July 1986. 
 
72. Tilley, S. and Huang, S. 2002. Documenting software systems with views 

III: towards a task-oriented classification of program visualization 
techniques. In Proceedings of the 20th Annual international Conference 
on Computer Documentation (Toronto, Ontario, Canada, October 20 - 23, 
2002). SIGDOC '02. ACM Press, New York, NY, 226-233. 

 
73. Maletic, J. I., Marcus, A., and Collard, M. L. 2002. A Task Oriented View of 

Software Visualization. In Proceedings of the 1st international Workshop 
on Visualizing Software for Understanding and Analysis (June 26 - 26, 
2002). VISSOFT. IEEE Computer Society, Washington, DC, 32. 

 
74. Card, S. K., Mackinlay, J., and Shneiderman, B., Readings in Information 

Visualization Using Vision to Think, San Francisco, CA, Morgan 
Kaufmann, 1999. 

 
75. Baecker R.M., Sorting Out Sorting: A Case Study of Software 

Visualization for Teaching Computer Science. In John Stasko, John 
Domingue, Marc H. Brown, and Blaine A. Price, editors, Software 
Visualization: Programming as a Multimedia Experience, chapter 24,  
pp. 369–381. MIT Press, Cambridge, MA, 1998. 



123 

76. Brown, M. H. & Sedgewick, R. (1984a). “Progress Report: Brown 
University Instructional Computing Laboratory.” ACM SIGCSE Bulletin, 
16(1): 91-101. 

 
77. Brown M.H., Sedgewick R., Interesting events. In Stasko et al. In Stasko, 

J., Domingue, J., Brown, M., and Price, B. (Eds.), Software Visualization: 
Programming as a Multimedia Experience. MIT Press, 1998, chapter 12, 
pp. 155—171. 

 
78. Brown, M. H. (1988a). Algorithm Animation. New York: MIT Press. 
 
79. Brown, M. H. (1988b). “Exploring Algorithms Using Balsa II.” IEEE 

Computer, 21(5): 14-36. 
 
80. Brown, M. H. (1998). A taxonomy of algorithm animation displays. In J. T. 

Stasko et al. (Eds.), Software visualization (pp. 35-12). Cambridge, MA: 
MIT Press.  

 
81. Stasko, J.T. (1990). "Tango: A Framework and System for Algorithm 

Animation" IEEE Computer 23, September 1990, pp. 27-39. 
 
82. Stasko, J.T., The Path-Transition Paradigm: A Practical Methodology for 

Adding Animation to Program Interfaces, Journal of Visual Languages and 
Computing, Volume 1, Number 3, September 1990, pp. 213-236. 

 
83. Stasko, J.T., (1992). "Animating algorithms with XTANGO" SIGACT News 

23, Spring 1992, pp. 67-71. 
 
84. Georgia’s Institute of Technology site 

http://www-static.cc.gatech.edu/gvu/softviz/algoanim/bpack.gif 
September 2006. 

 
85. Georgia’s Institute of technology site, 

http://www-static.cc.gatech.edu/gvu/softviz/algoanim/xtango.html 
September 2006. 

 
86. Stasko,J.T and Wehrli J.F., "Three-dimensional computation 

visualization," Tech. Rep. GIT-GVU-92-20, Georgia Institute of 
Technology, 1992. 

 
87. Stasko, J.T., Kraemer E. “A Methodology for Building Application-Specific 

Visualizations of Parallel Programs”, Journal of Parallel and Distributed 
Computing, Vol 18, No 2, June 1993, pp. 258-264. 

 



124 

88. Stasko, J.T., -Notes from CS7450 Information Visualization Course at 
Georgia Tech College of Computing (Spring 2005)  

 http://www-static.cc.gatech.edu/classes/AY2005/cs7450_spring/Talks/19-
softvis.pdf, September 2006. 

 
89. Stasko, J.T., "Using student-built animations as learning aids," in 

Proceedings of the ACM Technical Symposium on Computer Science 
Education. New York: ACM Press, 1997, pp. 25-29. 

 
90. Georgia’s Institute of Technology site 

http://www-static.cc.gatech.edu/gvu/softviz/ 
September 2006. 
 

91. Georgia’s Institute of Technology site, 
http://www-static.cc.gatech.edu/gvu/softviz/parviz/polkaanims.html 
September 2006. 

 
92. Brown, M. H. (1991). “Zeus: A System for Algorithm Animation and Multi-

View Editing. “Proceedings of IEEE Workshop on Visual Languages, New 
York: IEEE Computer Society Press: 4-9. 

 
93. Brown, M. H. (1992). Zeus: A System for Algorithm Animation and Multi-

view Editing (Research Report No. 75). DEC Systems Research Center, 
Palo Alto, CA. 

 
94. Brown, M. H and J. Hershberger. Color and sound in algorithm animation. 

Computer, Volume 25, Issue 12, Dec. 1992 pp. 52 – 63. 
 
95. Brown, M. H. and Najork, M. A. 1993. Algorithm animation using 3D 

interactive graphics. In Proceedings of the 6th Annual ACM Symposium 
on User interface Software and Technology (Atlanta, Georgia, United 
States). UIST '93. ACM Press, New York, NY, 93-100). 

 
96. Eick, S. G., Steffen, J. L., Sumner, E. E. SeeSoft --A Tool for Visualizing 

Line Oriented Software Statistics. IEEE Trans. on Software Engineering, 
18(11),1992, 957 – 968. 

 
97. BAKER, M.J., EICK, S.G. 1995. Space-filling software visualization. 

Journal of Visual Languages and Computing 6, 2, 119—133. 
 
98. Johnson B., Shneiderman B., Tree-maps: A spacelling approach to the 

visualization of hierarchical information structures. In IEEE Visualization 
'91 Conference Proceedings, pages 284{291, San Diego, California, 
October 1991. 

 



125 

99. Ball, T. A. and Eick, S. G. (1996). Software visualization in the large. IEEE 
Computer, 29(4):33-43. 

 
100. Ball T, Eick S, Mockus A., Web-based Analysis of large Scale Software 

Systems, http://www.mockus.us/papers/websoft/index.html September 
2006. 

 
101. Voinea, L., Telea, A., and van Wijk, J. J. 2005. CVSscan: visualization of 

code evolution. In Proceedings of the 2005 ACM Symposium on Software 
Visualization (St. Louis, Missouri, May 14 - 15, 2005). SoftVis '05. ACM 
Press, New York, NY, 47-56. 

 
102. Baecker, R.M. and Marcus, A., Printing and Publishing C Programs. In 

Stasko, J., Domingue, J., Brown, M., and Price, B. (Eds.), Software 
Visualization: Programming as a Multimedia Experience. MIT Press, 1998, 
pp. 45-61. 

 
103. Storey, M.A.D. Muller, H., Manipulating and documenting software 

structures using shrimp views, International Conference in Software 
Maintenance, IEEE Computer Society Press, 1995, pp. 275—285. 

 
104. Storey, M.A.D, Wong, K., Fracchia, F., Muller ,H., On integrating 

visualization techniques for effective software exploration. In Proceedings 
of the IEEE Symposium on Information Visualization, IEEE Visualization, 
1997. 

 
105. Wu, J. and Storey, M. D. 2000. A multi-perspective software visualization 

environment. In Proceedings of the 2000 Conference of the Centre For 
Advanced Studies on Collaborative Research (Mississauga, Ontario, 
Canada, November 13 - 16, 2000). S. A. MacKay and J. H. Johnson, Eds. 
IBM Centre for Advanced Studies Conference. IBM Press, 15. 

 
106. Storey, M.A., Best, C., Michaud, J., Rayside, D., Litoiu, M.,Musen, M. 

SHriMP Views: an Interactive Environment for Information Visualization 
and Navigation. Proc. CHI ‘02, ACM Press, NY, 520 – 521. 

 
107. Lintern, R., Michaud, J., Storey, M., and Wu, X. 2003. Plugging-in 

visualization: experiences integrating a visualization tool with Eclipse. In 
Proceedings of the 2003 ACM Symposium on Software Visualization (San 
Diego, California, June 11 - 13, 2003). SoftVis '03. ACM Press, New York, 
NY, 47-ff. 

 
 
 



126 

108. Lethbridge, T. and Singer, J. 1997. Understanding Software Maintenance 
Tools: Some Empirical Research. In Proceedings of the IEEE Workshop 
on Empirical Studies of Software Maintenance (WESS97), Bari, Italy, 157-
162. 

 
109. Brown M.H., Hershberger J., Program Auralization. In John Stasko, John 

Domingue, Marc H. Brown, and Blaine A. Price, editors, Software 
Visualization, chapter 10, pages 137-142. MIT Press, 1998. 

 
110. Kobsa A., Wahlster,W., editors. Computational Linguistics, volume 14(3). 

MIT Press for the Association of Computational Linguistics, September 
1988. Special Issue on User Modeling. 

 
111. User Modeling Inc. web page http://www.um.org/, September 2006. 
 
112. Kobsa A., A taxonomy of beliefs and goals for user models in dialog 

systems. In Alfred Kobsa and Wolfgang Wahlster, editors, User Models in 
Dialog Systems, pages 52--73. Springer-Verlag, Berlin, 1989. 

 
113. MIT Media Lab- Affective Computoing group 

http://affect.media.mit.edu/areas.php?id=understanding , September 2006. 
 
114. Wenger, E., Artificial Intelligence and Tutoring Systems. 1987, Los Altos, 

California: Morgan Kaufmann Publishers. 
 
115. Motta,E., Eisenstadt, M., Pitman, K., West,M., “Support for knowledge 

acquisition in the knowledge engineers’ assistant (KEATS),” Expert Syst., 
vol. 5, pp. 6-28, 1988. 

 
116. Storey, M. D., Fracchia, F. D., and Mueller, H. A. 1997. Cognitive Design 

Elements to Support the Construction of a Mental Model during Software 
Visualization. In Proceedings of the 5th international Workshop on 
Program Comprehension (WPC '97) (May 28 - 30, 1997). WPC. IEEE 
Computer Society, Washington, DC, 17. 

 
117. Singer, J., Lethbridge, T., Vinson, N., and Anquetil, N. 1997. An 

examination of software engineering work practices. In Proceedings of the 
1997 Conference of the Centre For Advanced Studies on Collaborative 
Research (Toronto, Ontario, Canada, November 10 - 13, 1997). J. H. 
Johnson, Ed. IBM Centre for Advanced Studies Conference. IBM Press, 
21. 

 
118. IEEE's Software Engineering Body of Knowledge @ www.swebok.org. 
 



127 

119. Bergeron, D., 1993. Visualization Reference Models (Panel Position 
Statement), Proceedings of IEEE Visualization, G.M. Nielson and D. 
Bergeron (Eds), IEEE Computer Society Press. 

 
120. Wehrend, S. and Lewis, C. 1990. A problem-oriented classification of 

visualization techniques. In Proceedings of the 1st Conference on 
Visualization '90 (San Francisco, California, October 23 - 26, 1990). A. 
Kaufman, Ed. IEEE Visualization. IEEE Computer Society Press, Los 
Alamitos, CA, 139-143. 

 
121. Stephen M. Casner, A Task-Analytic Approach to the Automated Design 

of Graphic Presentations, ACM Trans Graphics, Vol. 10, No. 2, April 1991, 
pp. 111-151. 

 
122. Shneiderman, B., "The Eyes Have It: A Task by Data Type Taxonomy for 

Information Visualizations", in Proceedings of IEEE Visual Languages, 
1996, pp. 336-343. 
 

123. Wiss, U., Carr, D., and Jonsson, H., "Evaluating Three- Dimensional 
Information Visualization Designs A Case Study of Three Designs", in 
Proceedings of International Conference on Information Visualisation, 
London, England, July 29-31 1998. 

 
124. Zhou, M.X.,  Feiner, S.K.,  Visual task characterization for automated 

visual discourse synthesis, Proceedings of the ACM CHI '98 Conference 
on Human Factors in Computing Systems, 1998, pp. 392 -- 399, Los 
Angeles, California, USA. 

 
125. Norman, D. A., The Psychology of Everyday Things. Basic Books, New 

York, 1988. 
 
126. Zhou, M. X. and Feiner, S. K. 1997. Top-down hierarchical planning of 

coherent visual discourse. In Proceedings of the 2nd international 
Conference on intelligent User interfaces (Orlando, Florida, United States, 
January 06 - 09, 1997). J. Moore, E. Edmonds, and A. Puerta, Eds. IUI 
'97. ACM Press, New York, NY, 129-136. 

 
127. MacKinlay, J. D., "Automating the design of graphical presentation of 

relational information", ACM Transaction on Graphics, vol. 5, no. 2, April 
1986, pp. 110-141. 
 

128. Russell, D. M., Stefik, M. J., Pirolli, P., and Card, S. K. 1993. The cost 
structure of sensemaking. In Proceedings of the SIGCHI Conference on 
Human Factors in Computing Systems (Amsterdam, The Netherlands, 
April 24 - 29, 1993). CHI '93. ACM Press, New York, NY, 269-276. 



128 

129. Lohse, G. L., Biolsi, K., Walker, N., and Rueter, H. H. 1994. A 
classification of visual representations. Commun. ACM 37, 12 (December 
1994), 36-49. 

  
130. Roth, S.F. and Mattis, J. (1990) Data characterization for intelligent 

graphics presentation. In Proceedings of CHI90 (Seattle, April 1-5, 1990) 
New York: ACM, 193-200. 

 
131. Koschke, R., Software Visualization for Reverse Engineering In S. Diehl 

(ed): Software Visualization, volume 2269 of LNCS pp. 138-150. Springer, 
2001. 

 
132. Duke, D.J.; Brodlie, K.W.; Duce, D.A.; Herman, I., "Do you see what I 

mean? [Data visualization]," Computer Graphics and Applications, IEEE , 
vol.25, no. 3, pp. 6- 9, May-June 2005. 

 
133. Report of the Visualization Ontology Workshop, 

http://www.nesc.ac.uk/talks/393/vis_ontology_report.pdf, September 2006. 
 
134. Haber R.B., McNabb, D.A., "Visualization Idioms: A Conceptual Model for 

Scientific Visualization Systems," Visualization in Scientific Computing, 
G.M. Nielson, B. Schriver, and L.J. Rosenblum, eds., IEEE CS Press, 
1990. 
 

135. Robertson P., De Ferrari, L., Systematic Approaches to Visualization: Is a 
Reference Model Needed? in Scientific Visualization, 1994, Advances and 
Challenges, Ed: L. Rosenblum, R.A. Earnshaw, J. Encarnacao, H. Hagen, 
A. Kaufman, S. Klimenko, G. Nielson, F. Post, D. Thalmann , Academic 
Press. 

 
136. Brodlie,K., Duce,D., Gallop,J., Sagar,M., Walton,J., Wood,J., Visualization 

in Grid Computing Environments. Proceedings of IEEE Visualization 2004, 
edited by Holly Rushmeier, Greg Turk and Jarke J. van Wijk, pp. 155-162. 
ISBN:0-7803-8788-0. 

 
137. Nielson, G.M., Visualization in Scientific and Engineering Computation. 

IEEE Computer, 24(9), pp. 58-66, September 1991. 
 

 



129 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  

 
2. Dudley Knox Library 

Naval Postgraduate School 
Monterey, California  

 
3. Dr. Thomas Otani 

Naval Postgraduate School 
Monterey, California 

 
4. Dr. Man-Tak Shing 

Naval Postgraduate School 
Monterey, California 

 
5. Dimitrios Spyrou 

Naval Postgraduate School 
Monterey, California 

 


